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I - Introduction

I Faults and fractures are of interest to earth scientists at various scales
. control fluid flow: water, magma, hydrocarbons. . .
. remote sensing of faults ⇒ invert seismic data for fracture properties
. wave field directly excited at fracture ⇒ similar to acoustic emissions or

micro-earthquakes
I Generation of elastic waves at fracture location
. excitation by focusing laser light onto fracture in transparent material
. measured displacement field shows fracture tip diffractions
. tip diffractions confirmed from incident waves scattered by the fracture

I Potential for more detailed studies of fracture properties
. stress load and/or fluid content

II - Laboratory sample: fractured plastic cylinder

Fracture generation using a high-power laser
I PMMA cylinder, 150 mm high x 50 mm

in diameter
I high-power pulsed laser beam focused

inside the sample
I light absorption ⇒ thermal expansion ⇒

fracture
I fracture parallel to cylindrical axis,

diameter 2a ≈ 7 mm
(Zadler and Scales, 2008; Blum et al., 2011)

2a

III - Experimental setup: laser generation and detection of P-waves

I Pulsed infrared laser source
. low energy pulsed laser beam focused on

source location
. optical contrast leads to energy

absorption ⇒ localized heating
. thermal expansion results in elastic waves

I Laser interferometer receiver details
. measures absolute displacement (nm)
. wide bandwidth (20 kHZ — 20 MHz)
. fixed with respect to the source location,
δ = 20◦

. measures displacements in order of Å

fracture

Laser source

receiverLaser

I PMMA sample mounted on a rotational stage
. sample rotates while source and receiver are fixed in the laboratory frame
. source and receiver focused in an (x − y) plane normal to the cylinder axis
. acquires one trace per degree
. automated acquisition using computer-controlled stage and acquisition board

IV - Measured displacements

I Fracture source event (in purple)
. travels a distance equal to the cylinder radius R

I Surface source event (in orange)
. energy scattered from the fracture
. travels a distance 2R
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V - Tip diffractions travel-time: fracture size

I Both arrivals show tip diffractions from fracture edges
I Distance from each fracture tip to receiver depends on angle (θ + δ)
I Arrival times can be predicted from geometry
. for fracture source: tfrac =

R
α(1± a

R sin(θ))
. for surface source: tsurf =

R
α(2± a

R(sin θ(1 + cos δ) + sin δ cos θ))
. a = fracture radius, R = cylinder radius, α = P-wave velocity

I Best fits overlain on both arrivals: estimated diameter 2a ≈ 6.8 mm

θ (°)

T
im

e
 (

µ
s

)

Surface excitation

−90 0 90 180 270

16

18

20

22

24

θ (°)

Direct excitation

−90 0 90 180 270

6

8

10

12

14

VI - Scattering amplitudes: fracture properties

I Amplitude of scattered arrival can be used to estimate fracture properties
. radius of the fracture (a)
. orientation of the fracture (θ)
. compliance of the fracture (η), assuming linear-slip model (Schoenberg,

1980)
I we estimated normal compliance ηN ≈ 10−11 m/Pa (from Blum et al. (2011))
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VII - Conclusion

I Laser-based ultrasonic techniques can
. excite and detect elastic waves at the surface
. excite heterogeneities (fractures) inside optically clear materials

I Fracture size estimation (verified by direct observations)
I Future applications for earthquake dynamics
. measure spatial variations in the fracture properties
. delineate barriers and asperities (Scholz, 1990)
. measurement of fracture response as a function of stress loads
. local excitation of the fracture
. measurement of fracture response as a function of fluid content

I For more details see Blum et al. (in press)
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