ED51B-0750: An inquiry based seismology lesson for SeismicCanvas

T. Dylan Mikesell, Department of Geosciences, Boise State University, Boise, ID, USA-dmikesell@cgiss.boisestate.edu

1. Introduction

Incorporating technologies into science education to simplify the learning process and help students comprehend complex content more efficiently and accurately is highly desirable. We present a seismology lesson developed for high school and introductory undergraduate Earth science courses that utilizes the new seismic analysis software SeismicCanvas, a GUI application based in JAVA. The seismology lesson follows in the footsteps of previous seismic analysis lessons. However, by incorporating SeismicCanvas, we remove any command line knowledge requirement, while still giving the students hands on experience with digital signals, data processing, and inversion. The goal is to excite students about seismology using basic exercises such as this and eliminate the frustration common in beginning programmers. The benefit of SeismicCanvas is that is freely available and offers a GUI environment.

Global seismic network stations. Data is freely available http://www.iris.edu/data/.

3. SeismicCanvas

New Seismic Canvas	Ctrl+N	:k
Open Seismic Canvas	Ctrl+0	
Import Records from		IRIS Web Services
Export Selected Records	>	SAC Binary Files Ctrl+I
Close	Ctrl+W	IRIS ASCII Files
Save	Ctrl+S	
Page Setup		
Print	Ctrl+P	

SeismicCanvas is freely available from Glenn Kroeger at Trinity University. See **ED51B-0749** in this session for details about new capabilities and project plans.

4. A Homogeneous Model

We have a good idea of Earth's dimensions. Therefore, students can compute synthetic arrival times (T = X/V) for P or S waves. In this example, we use a homogeneous sphere with a radius of 6371 km.

quake. Then we compute theoretical arrival times at different Δ for different P-wave velocities (right plot).

5. Analysis in Seismic Canvas

Using	g Seism	icCa	nvas	we	let	the	e sti	uden	ts ez	cplore
the	effects	of	diffe	rent	data	р	roces	sing	func	tions.
File Edit View	w Process Zoom Measure Pick									
Select Drag KBS BHZ Lat = 78.9 Lon = 11.9 SDV BHZ SDV BHZ Lat = 8.9 Lon = -70.6 TRQA BHZ TRQA BHZ	Zoom Measure Pick						The the Hons earth Mare red been filter	way left shu, hqua ch, ź way	veform come ke 2011. veform ban	ns on from Japan 11 The has dpass
WCI BHZ Lat = 38.2 Lon = -86.3				VINA MARAN			111001			

	File Edit View Process	
The left plot shows	Select Drag Zoom Measure Pick	
he bandpass fil- ered waveforms fter zooming	KBS BHZ Lat = 78.9 Lon = 11.9	
round the first P-wave arrival. Stu-	SDV BHZ Lat = 8.9 Lon = -70.6	
ents can use the nouse to estimate relative time shift	TRQA BHZ Lat = -38.1 Lon = -62.0	dt = 617.99 sec
t from waveform to vaveform.	WCI BHZ Lat = 38.2 Lon = -86.3	

From here on we are left to use MATLAB. Not all of the needed processing features available in SeismicCanvas yet. For instance, SeismicCanvas does not sort traces based on spatial information or set earthquake origin time.

6. Phase identification

Once the data are correctly sorted by distance from the earthquake and the desired filter and gain have been applied, students begin to identify phase arrivals. In this example the direct P-wave is used.

Data are filtered between 0.5 to 19 Hz.

7. Inverse Modeling

- If we changed the velocity, would the synthetic data match the observed data better?
- Should we add layers?
- Should we change the processing before we pick phases?

8. Multiple Earthquakes

After students try to 'randomly' adjust their velocity model, either by changing the velocity or adding layers, it is worthwhile to let them try to repeat their results with many earthquakes. Investigating where the model and synthetics deviate can be enlightening, as illustrated below.

8. Further thoughts pressional waves do not?

We thank the facilities of the IRIS Data Management Center for the waveform data and Glenn Kroeger for SeismicCanvas. The backbone of this lesson, called Determining Earth's Internal Structure, comes from the IRIS Education and Outreach group (http://www.iris.edu/hq/resource/).

What can we learn from multiple earthquakes?

• What does studying shear waves tells us that com-

• How can we tell the outer core is liquid?

• What features can we easily implement in SeismicCanvas besides data processing capabilities: 1D modeling, pick plotting, etc.?

• What other basic seismology (or other signal processing) lessons can we use this simple GUI applications for (e.g., microseismic data from a reservoir)?

Acknowledgments