Elastic scattering by planar fractures

Thomas E. Blum¹, Roel Snieder², Kasper van Wijk¹, and Mark E. Willis³

¹Physical Acoustics Lab Boise State University Boise, ID

²Center for Wave Phenomena Colorado School of Mines Golden, CO

³Formerly at ConocoPhillips, Houston, TX, now at Halliburton, Houston, TX

September 21, 2011

Outline

- 2 Scattering by a plane crack
- 3 Laboratory experiments

Faults and fractures

- Controls fluid flow: hydrocarbons, water, magma...
- Characterization of fracture properties with elastic waves
- Active or passive monitoring

http://makel.org/fractures/

http://phobos.ramapo.edu/

http://http://geotripper.blogspot.com/

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis Elastic scattering by planar fractures

• Single fracture

- Single fracture
- Linear-slip model: $[u_i] = \eta_{ir} T_r$, with [u] displacement discontinuity, η compliance (1/stiffness) and T traction

- Single fracture
- Linear-slip model: $[u_i] = \eta_{ir} T_r$, with [u] displacement discontinuity, η compliance (1/stiffness) and T traction
- Born approximation: scattered field small compared to incident field

- Single fracture
- Linear-slip model: $[u_i] = \eta_{ir} T_r$, with [u] displacement discontinuity, η compliance (1/stiffness) and T traction
- Born approximation: scattered field small compared to incident field
- Frequency domain: $f(t) = \int F(\omega)e^{-i\omega t}d\omega$

- Single fracture
- Linear-slip model: $[u_i] = \eta_{ir} T_r$, with [u] displacement discontinuity, η compliance (1/stiffness) and T traction
- Born approximation: scattered field small compared to incident field
- Frequency domain: $f(t) = \int F(\omega) e^{-i\omega t} d\omega$
- Previous work: small fractures ⇒ effective medium (Crampin, 1981; Hudson, 1981), or large fractures ⇒ reflection coefficients (Pyrak-Nolte et al., 1990; 1992)

Intro Theory Experiments Direct excitation

Theoretical expression and laboratory modeling

- Fractured plastic samples
- Ultrasonic frequencies (100 kHz 10 MHz) $\Rightarrow \lambda \sim 10^{-4}$ $10^{-2}~{\rm m}$
- Laser generation and detection of body waves

Units are cm

Ultrasonic laser receiver

- Wide bandwidth
- Absolute displacement
- Non-contact and small footprint compared to the wavelength
- No moving parts
- Scanning system

General expression

• Decomposition of the compliance η : $\eta_{ii} = \eta_N f_i f_i + \eta_T (\delta_{ii} - f_i f_i)$

stress

 σ

- ω angular frequency
- α P-wave velocity
- ρ density of the material
- k_{α} wavenumber
- R distance to the fracture

General expression

• Decomposition of the compliance $\eta:$

$$\eta_{ij} = \eta_{\mathsf{N}} f_i f_j + \eta_{\mathsf{T}} \left(\delta_{ij} - f_i f_j \right)$$

• Displacement as a function of the scattering amplitude: $u_n^{(P)}(\mathbf{x}) = f_{PP}(\eta) \frac{e^{ik_{\alpha}R}}{R} m_n$

 σ

- stress
- $\omega \quad \text{ angular frequency} \quad$
- α P-wave velocity
- ρ density of the material
- k_{α} wavenumber
- R distance to the fracture

Scattering amplitude of a circular plane crack

For the experimental geometry:

$$f_{P,P}(\psi,\theta) = \frac{\omega a}{2\rho\alpha^3(\sin\psi - \sin\theta)} J_1\left(\frac{\omega a}{\alpha}(\sin\psi - \sin\theta)\right) \\ \times \left[\eta_N\left\{(\lambda + \mu)^2 + (\cos 2\psi + \cos 2\theta)(\lambda + \mu)\mu\right. \\ \left. + \mu^2(\cos 2\psi \cos 2\theta)\right\} + \eta_T \mu^2\left(\sin 2\psi \sin 2\theta\right)\right] \,.$$

 \Rightarrow term in η_N , and term in η_T non-zero for $\psi \neq 0$

- ω angular frequency
- α P-wave velocity
- ho density of the material
- λ, μ Lamé parameters
 - fracture radius

а

Experimental setup

- Sample: PMMA cylinder (transparent plastic material), 150 mm high x 50.8 mm diameter
- Piezoelectric transducer source, 5 MHz, 400 V pulse
- Laser ultrasonic receiver: wide bandwidth (20 kHz 20 MHz), absolute vertical displacement, small footprint, sensitivity in Å
- Fixed source-fracture angle ψ and moving receiver (θ changes)

Experimental setup: geometry

Non-fractured sample

$$\bullet\,$$
 velocities $\alpha=$ 2600 m/s and $\beta=$ 1400 m/s

•
$$\rho = 1190 \text{ kg/m}^3 \Rightarrow \text{Lamé parameters } \lambda = 3.4 \text{ GPa and}$$

 $\mu = 2.3 \text{ GPa}$

Non-fractured sample

- \bullet velocities $\alpha = 2600 \ {\rm m/s}$ and $\beta = 1400 \ {\rm m/s}$
- $ho = 1190 \ {\rm kg/m^3} \Rightarrow {\rm Lamé}$ parameters $\lambda = 3.4 \ {\rm GPa}$ and $\mu = 2.3 \ {\rm GPa}$
- *f-k* filter to remove surface waves

Fractured sample: data

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Fractured sample: data

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Elastic scattering by planar fractures

BOISE

Influence of η_N : experimental amplitude

 $\eta_N = 10^{-11} \text{ m/Pa}$

Influence of η_T : experimental amplitude

Influence of η_T : experimental amplitude $\eta_T = 10^{-12} \text{ m/Pa}$

Fracture scattering: summary

- Analytic expression for the scattering amplitude
- Good agreement between theory and laboratory data
- Estimation of the compliance $\eta_N \approx 10^{-11} \text{ m/Pa}$
- Same range of compliance as found the literature (Pyrak-Nolte et al., 1990, Worthington, 2007)
- Low sensitivity to η_T

Direct excitation of a fracture

Experimental setup

- Same fractured sample
- Direct excitation by laser-induced thermal expansion
- Pulsed infrared laser source

Results

Results

BOISE STATE

Results

Intro Theory Experiments Direct excitation

Tip diffractions \Rightarrow radius estimation a = 3.5 mm

Intro Theory Experiments Direct excitation

Tip diffractions \Rightarrow radius estimation a = 3.5 mm

Aknowledgements

We thank ConocoPhillips, especially Phil Anno, and Samik Sil for supporting this research. We also thank John Scales and Filippo Broggini from the Colorado School of Mines and fellow members of the Physical Acoustics Laboratory at Boise State University for their constructive ideas and comments.

www.earth.boisestate.edu/pal

