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SUMMARY

Remote sensing of fractures with elastic waves is important
in fields ranging from seismology to non-destructive testing.
While previous analytic descriptions of scattering mostly con-
cern very large or very small fractures (compared to the domi-
nant wavelength), we present an analytic solution for the scat-
tering of elastic waves from a fracture of arbitrary size. Based
on the linear-slip model for a fracture, we derive the scattered
amplitude in the frequency domain under the Born approx-
imation for all combinations of incident and scattered wave
modes. Our analytic results match laser-based ultrasonic lab-
oratory measurements of a single fracture in clear plastic, al-
lowing us to quantify the compliance of a fracture.

INTRODUCTION

Faults and fractures in the subsurface can act as conduits or
barriers to fluid flow of hydrocarbons and water. Understand-
ing the interaction of fractures with elastic waves is crucial in
order to characterize fracture properties remotely. In hydro-
carbon reservoirs, hydraulic fractures are generated to stimu-
late production and can be monitored with active or passive
sources (Wills et al., 1992; Meadows and Winterstein, 1994).
Besides geophysical applications, scattering from fractures is
important in non-destructive testing applications (Langenberg
et al., 2002).

The linear slip model links the discontinuity of the displace-
ment field at the fracture plane to the stress traction assumed
to be continuous across the slip interface (Schoenberg, 1980).
This model can be directly applied to fractures of large spatial
extent compared to the wavelength. The extreme case where
the fracture plane is infinite leads to frequency dependent re-
flection and transmission coefficients (Pyrak-Nolte et al., 1990;
Pyrak-Nolte and Nolte, 1992; Zhu and Snieder, 2002). The
linear slip model is often used in the case of a linear slip inter-
face (Coates and Schoenberg, 1995), or fluid-filled fractures
(Groenenboom and Falk, 2000). Finally, Fang et al. (2010)
present finite-difference numerical simulations of the scatter-
ing of P-waves by a finite circular fracture.

Here, we apply the linear slip model to a single finite planar
fracture under the Born approximation. From this, we de-
velop an analytic expression for the general scattered ampli-
tude without making assumptions about the fracture size or
wavelength. We derive the scattered amplitude expression in
the frequency domain for incoming and scattered P-waves. We
illustrate this theoretical work with a novel laboratory experi-
ment by estimating the normal compliance for a single crack
generated in a clear plastic sample, and show that the measured
scattered amplitude is explained by a reasonable compliance
value.

GENERAL EXPRESSIONS FOR SCATTERING BY A
FRACTURE

The derivation is formulated in the frequency domain using
the following Fourier convention f (t) =

∫
F(ω)e−iωtdω . For

brevity, we do not make the frequency dependence explicit,
and we use the Einstein summation convention.

We derive a general expression of the wave scattered by a frac-
ture of arbitrary size. The stress across the fracture is contin-
uous, but the displacement across the fracture is not necessar-
ily continuous. We denote the discontinuity in the displace-
ment by [u]. According to equation (3.2) of Aki and Richards
(2002), the displacement at location x due to the discontinuity
of the displacement at the fracture Σ is given by

un(x) =
∫∫

Σ
[ui(s)]ci jkl f jGnk,l(x,s)d2s , (1)

where f̂ is the normal vector to the fracture as shown in Fig-
ure 1, ci jkl is the elasticity tensor, and Gnk,l is the gradient of
the displacement Green’s function defined as

Gnk,l(x,s) =
∂Gnk(x,s)

∂ sl
. (2)

We next relate the discontinuity in the displacement to the
stress field. We follow Schoenberg (1980) and assume that
the slip discontinuity is related to the traction T at the fracture
by a compliance matrix η

[ui] = ηirTr . (3)

Expressing the traction with the stress σi j and the normal vec-
tor to the fracture yields

[ui] = ηirσrs fs . (4)

Inserting this result in equation (1) gives

un(x) =
∫∫

Σ
σi jNi jklGnk,l(x,s)d2s , (5)

with
Ni jkl = ηpi f j fqcpqkl . (6)

We now assume that the properties of the fracture can be char-
acterized by a normal compliance ηN and a shear compliance
ηT . In that case, one can use a dyadic decomposition to write
the compliance matrix as

ηi j = ηN fi f j +ηT
(
δi j− fi f j

)
, (7)

where δi j is the Kronecker delta. We solve this integral equa-
tion in the Born approximation by replacing the stress in the
right hand side of equation (5) by the stress σ (0)

i j for a P-wave
propagating through a homogeneous medium, depending on
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the type of incident wave. In that case the scattered wave is
given by

un(x) =
∫∫

Σ
σ (0)

i j Ni jklGnk,l(x,s)d2s . (8)

Since Ni jkl is known we can solve the scattering problem using
the Born approximation.

Consider first an incoming plane P-wave that propagates in the
n̂-direction (Figure 1). Since such a wave is polarized in the
longitudinal direction,

u(P)(s) = n̂eikα (n̂·s) , (9)

where
kα = ω/α , (10)

with α the P-wave velocity and ω the angular frequency. For
an isotropic medium σi j = λδi j∂kuk + µ(∂iu j + ∂ jui) and the
stress associated with this plane P-wave is

σ (P)
i j = ikα

(
λδi j +2µnin j

)
eikα (n̂·s) . (11)

Inserting the stress (11) into expression (8) gives the scattered
field for an incoming P-wave.

SCATTERED AMPLITUDES

The scattered field can effectively be expressed by a scattered
amplitude (Merzbacher, 1970). According to expression (8),
the scattered field depends on Gnk,l , which is the gradient of
the Green’s function. Expression (4.29) of Aki and Richards
(2002) gives the gradient of the Green’s function in the time
domain for a homogeneous, isotropic infinite space. Retaining
the P-wave far field term only, and replacing the time derivative
with −iω gives, in the frequency domain

Gnk,l(x,s) =
−iωmkmnml

4πρα3r
eikα r , (12)

where the unit vector m̂ defines the direction of the outgoing
wave (Figure 1) and r = |x− s| denotes the distance between
the observation point x and the integration point s on the frac-
ture,

If we momentarily choose the origin of our coordinate system
to be the center of the fracture, the distance from the origin
to the observation point is denoted by R.When this distance is
large compared to the size of the fracture, we can approximate

r = R− (m̂ · s) , (13)

where m̂ is the unit vector from the center of the fracture to the
observation point x (Figure 1). In expression (12) we replace r
by equation (13) in the exponents, and replace r in the denom-
inator by R. Inserting these results into equation (8) gives the
following expressions far the radiated P-waves

u(P)n (x) =
∫∫

Σ
σ (0)

i j Ni jkle
−ikα (m̂·s)d2s

(−iωmnmkml

4πρα3

)
eikα R

R
,

(14)

In this expression σ (0)
i j is given by equation. (11). We next

define the scattered amplitude f for outgoing P-waves by

u(P)n (x) = fPP
eikα R

R
mn , (15)

In the following fP,P is the scattered amplitude from an inci-
dent P-wave into a scattered P-wave. A comparison with equa-
tion (14) shows that the scattered amplitude is given by

fPP =

∫∫

Σ
σ (0)

i j Ni jkle
−ikα (m̂·s)d2s

(−iωmkml

4πρα3

)
, (16)

In the following expressions it is convenient to use a form fac-
tor F(k) that is defined as

F(k) =
∫∫

Σ ei(k·s)d2s∫∫
Σ d2s

= A−1
∫∫

Σ
ei(k·s)d2s , (17)

where A is the surface area of the fracture. Explicit expressions
for the scattered amplitude follow by inserting expressions (7)
and (11) into the equation above. This gives the following scat-
tered amplitude for P to P scattering

fP,P(n̂;m̂) =
ω2

4πρα4 AF (kα (n̂− m̂))
{

λ 2ηN

+2λ µηN

(
(n̂ · f̂)2 +(m̂ · f̂)2

)

+4µ2(ηN −ηT )(n̂ · f̂)2(m̂ · f̂)2

+4µ2ηT (n̂ · m̂)(n̂ · f̂)(m̂ · f̂)
}
, (18)
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Figure 1: Definition of directions and angles for incoming and
outgoing waves from a fracture (shaded area).

SCATTERING BY A PLANE CRACK

We next derive explicit expressions for the scattered ampli-
tudes in terms of the directions of the incoming and scattered
waves for the special case of a plane crack that is circular. We
can show that for a circular fracture with radius a

F(k) =
2

k‖a
J1(k‖a) (circular fracture), (19)

where J1 is the Bessel function of order 1, k‖ is the absolute
value of the component of k parallel to the crack, and a is the
size of the crack. In order to express the scattered amplitude
in the angles that define the incoming and outgoing waves we
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need to define these angles and the orientation of the fracture.
We use a coordinate system where the z-axis is perpendicu-
lar to the fracture, and the x-axis is chosen in such a way that
the incoming wave propagates in the (x,z) plane coming from
the −x direction (Figure 1). The direction of incoming wave
makes an angle ψ with the z-axis, while the direction of the
outgoing wave is defined by the angles θ and ϕ commonly
used in a spherical coordinate system. Inserting the angles de-
fined in Figure 1 into expression (18) gives the angular depen-
dence of the scattered amplitude

fP,P(n̂;m̂) =
ω2

4πρα4 AF (kα (n̂− m̂))×
{
(λ +µ)2ηN

+ηN

(
λ µ +µ2

)
(cos2ψ + cos2θ)

+µ2ηN cos2ψ cos2θ

+µ2ηT sin2ψ sin2θ cosϕ
}

. (20)

In the following we consider a source normal to the fracture
(ψ = 0), and a receiver in the (x-z) plane, therefore φ = 0 and
m̂ = sinθ x̂+ cosθ ẑ. Equation (20) therefore simplifies into

fP,P(n̂;m̂) =
ω2

4πρα4 AF(kα (n̂− m̂))ηN

[
(λ +µ)2

+µ2 cos2θ +µ(λ +µ)(1+ cos2θ)
]
.

Note that here the term containing ηT vanishes, and the scat-
tered amplitude fP,P(ψ = 0,θ) only depends on the normal
component ηN of the compliance tensor. On the other hand,
for a non-normal incidence ψ , the scattered amplitude fP,P is
a function of ηN and ηT . Moreover, for a circular fracture, we
can use Equation (19)

F (kα (n̂− m̂))≈ −2α
aω sinθ

J1

(ωa
α

sinθ
)
. (21)

For the experimental case, the scattered amplitude is thus ex-
pressed as

fP,P(θ) =
−ωa

2ρα3 sinθ
J1

(ωa
α

sinθ
)

ηN

[
(λ +µ)2

+µ2 cos2θ +µ(λ +µ)(1+ cos2θ)
]
. (22)

LABORATORY EXPERIMENTS

We carry out laboratory experiments in order to measure P to
P scattering and test our theoretical model. We use ultrasonic
frequencies in plastic samples. The samples are Poly(methyl
methacrylate) (PMMA) cylinders 2 in (50.8 mm) in diameter
and 150 mm in height. Elastic waves are generated with a
5 MHz piezoelectric transducer (PZT), disk-shaped with a di-
ameter of 7.5 mm. The transducer is attached to the curved
surface of the cylinder using phenyl salicylate as a glue. Be-
cause this chemical has a melting point of 41.5◦C, medium
heating is enough to melt it and allows to attach the transducer
to a curved surface. The PZT is driven by a 400 V pulse with
maximum energy at the natural frequency of the PZT.

We measure the elastic displacement with a laser interferome-
ter. Our adaptive laser ultrasonic receiver is based on a constant-
wave doubled Nd:YAG laser, generating a Constant Wave (CW)
250 mW beam at a wavelength of 532 nm. The receiver uses
two-wave mixing in a photorefractive crystal to deliver the dis-
placement of the sample surface. This receiver measures the
out-of-plane (vertical) displacement field. It is calibrated to
output the absolute displacement field in nanometers (See Blum
et al. (2010) for a complete description). The frequency re-
sponse is flat between 20 kHz and 20 MHz, and it can accu-
rately detect displacements of the order of parts of Ångstroms.
Since the sample material is transparent for green light, we ap-
ply a reflective tape to the surface to reflect enough light back
to the laser receiver.

Measurements on a blank sample

We first carry an experiment out on a blank cylinder. This
measurement is used as a reference of the background field
propagating in absence of a scatterer. The sample is mounted
on a computer-controlled rotational stage. We focus the laser
receiver beam on the sample in a plane normal to the cylinder
axis (taken as the y axis) and containing the PZT source; the
(x−z) plane. By computer-controlled rotation of the stage, we
measure the elastic field in this plane every degree with respect
to the center of the cylinder, except for a small range of angles
blocked by the PZT source. For each receiver location, 256
waveforms are acquired and averaged after digitization.

The left plot of Figure 2 shows the raw ultrasonic displace-
ment field for all recorded azimuths. The horizontal axis rep-
resents the angle δ between the source and the receiver di-
rections, δ = θ + 180◦ (for θ defined in Figure 1).The main
events on this scan are the direct P-wave displacement with a
curved moveout and the Rayleigh wave traveling around the
sample with the linear moveout.In order to remove the high
amplitude Rayleigh wave arrival, we apply an f-k filter to the
data. All measurements following these are performed in the
(x− z) plane and f-k filtered. From these data we obtain the
elastic properties of the material.

Figure 2: Displacement field for a homogeneous PMMA sam-
ple.

Fractured sample

We create a single fracture in a different cylinder of PMMA by
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focusing a high power Q-switched Nd:YAG laser in the sam-
ple. The laser generates a short pulse (∼ 20 ns) of infrared (IR)
light that is absorbed by the sample material at the focal point
and is converted into heat. The sudden thermal expansion gen-
erates stress and forms a fracture parallel to the cylindrical axis
(Zadler and Scales (2008) give a more extensive description of
the generation process). The created fracture has a circular
shape and a radius of approximately 5 mm, a photograph is
shown in Figure 3, with the fracture roughly in the center.

We display in on the right plot of Figure 2 the ultrasonic dis-
placement after f-k filtering, measured with the PZT source at
location S1 normal to the fracture plane, corresponding to an
angle ψ = 0◦. In addition to the events present with the blank
sample, we see an arrival at ∼ 20 µs. This arrival corresponds
to the PP scattered field from the crack. We also see that the
amplitude of this event is maximum for δ = 180◦ (forward
scattering), and δ = 0◦ (back-scattering), corresponding to the
specular reflection. Finally, we note that this event is slightly
asymmetric: for receiver angles δ < 180◦, the scattering ar-
rival is earlier than 20 µs, whereas for angles δ > 180◦, the
arrival is after 20 µs. This is due to the fact that the fracture
is not perfectly centered on the y-axis. As we will see in the
next section, for this source position the scattered amplitude is
a function of ηN only.

Figure 3: Photograph of the disk-shaped fracture in our labora-
tory sample. Ruler units are cm. The diameter of the fracture
is approximately 10 mm, and the diameter of the cylinder is
50.8 mm.

Scattered amplitudes

The theoretical scattered amplitude for the experimental setup
is given by 22. To compare the experimental results with the
analytic expression, we first apply a narrow band-pass filter
centered around f0 = 1 MHz, corresponding to the dominant
frequency of the scattered event. We then pick the amplitude
of the scattered arrival at its maximum for a range of angles
excluding traces close to the source, and receivers facing the
source, where the incident and scattered field overlap. The
experimental amplitude for the valid range of angles is plotted
in blue in Figure 4.

We compute the corresponding theoretical amplitude for f0 =

1 MHz, for a circular fracture with radius a = 5 mm, and
using the Lamé coefficients computed from the blank mea-
surement. We optimize the fit with the theoretical amplitude
(displayed in red in the figures) for the normal incidence data
since it only depends on normal component of the compliance
ηN . We find that the best fit is obtained for ηN ≈ 10−11 m/Pa,
corresponding to the thick dashed red curve in Figure 4. We
also plot the theoretical curves for ηN = 2 · 10−11 m/Pa and
ηN = 0.5 · 10−11 m/Pa in dotted purple and orange, respec-
tively, to show that the ηN = 10−11 m/Pa value is a robust
fit. This value of compliance is in the same range as η ∼
10−12−10−9 m/Pa found in the literature in the case of a sin-
gle fracture in steel (Pyrak-Nolte and Nolte, 1992) and a fault
zone (Zhu and Snieder, 2002).
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Figure 4: Scattered amplitude for the source at normal inci-
dence in blue (ψ = 0◦). The best theoretical fit corresponding
to ηN = 10−11 m/Pa is plotted in thick dashed red. We also
show the theoretical amplitudes corresponding to half (dotted
orange) and twice (dotted purple) this value of ηN .

CONCLUSIONS

Based on a linear-slip model, we derive the analytic expres-
sion of the scattered amplitude of a plane fracture of arbitrary
size under the Born approximation. Of particular interest are
the results for fractures of comparable size to the elastic wave-
length.

The theory provides scattered amplitudes expressed as a prod-
uct of a Bessel function and trigonometric functions in the case
of a circular fracture. Non-contacting ultrasonic data acquired
on a plastic laboratory sample for P-P scattering from a cir-
cular fracture is in qualitative agreement with the theory, and
the estimated compliance of the fracture agrees with values re-
ported in the literature.
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