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Introduction

The open-source software (OSS) movement traces back to 
the 1950s,1 when voluntary organizations such as Share—
an intermediary between IBM and its users—pursued col-
laboration and reduced programming costs by leveraging 
diverse expertise and practices of academic exchange.2 
However, notable developments, such as the launch of the 
GNU Project in 19843 and Netscape’s decision to release 
the source code for its Internet browser in 1998,1 signifi-
cantly increased interest in the movement. More recently, 
examples such as the Linux operating system,4 WordPress 
for blogging,5 and Google Chrome for Internet browsing6 
have further demonstrated the potential for successful open-
source projects. A majority of code developed under the 
umbrella of “open source” is distributed either free or for a 
nominal charge, but the primary distinguishing feature is 
the freedom to use, modify, and distribute source code 
under a public, unrestricted license.1,7

Laboratories built on the principles of the open-source 
movement have been in existence for decades.8 Beyond the 
obvious benefit of reducing laboratory running costs, there 
are many advantages of an open-source laboratory. 
Collaborative development fuels software capabilities to be 
expanded beyond what is plausible through the efforts of a 
single development team.9 When open-source code is effec-
tively disseminated, there is a community of programmers 

available for testing.10 Therefore, some of the burden of 
validation is taken over by the community, errors are 
reduced, and reliability and traceability are improved.9 In 
the spirit of Eric Raymond’s proclaimed Linus’s Law, 
“given enough eyeballs, all bugs are shallow.”11

Perspectives toward OSS are changing, as the tools we 
use become increasingly open source. Still, laboratory auto-
mation remains an uncommon field of open software devel-
opment.9 When proprietary automation packages are used, 
specialized software is often required to both acquire and 
read the data. This causes difficulties in exchanging data 
across computers or operating systems and incurs extra cost 
and licensing issues.12 For collaborative research, it is ben-
eficial for all contributors to use the same software. Open-
source systems facilitate this with a minimal amount of cost 
and inconvenience. Altogether, it is favorable to use a soft-
ware platform that is completely open source, from the 
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Abstract
In modern laboratories, software can drive the full experimental process from data acquisition to storage, processing, 
and analysis. The automation of laboratory data acquisition is an important consideration for every laboratory. When 
implementing a laboratory automation scheme, important parameters include its reliability, time to implement, adaptability, 
and compatibility with software used at other stages of experimentation. In this article, we present an open-source, flexible, 
and extensible Python package for Laboratory Automation, Control, and Experimentation (PLACE). The package uses 
modular organization and clear design principles; therefore, it can be easily customized or expanded to meet the needs of 
diverse laboratories. We discuss the organization of PLACE, data-handling considerations, and then present an example 
using PLACE for laser-ultrasound experiments. Finally, we demonstrate the seamless transition to post-processing and 
analysis with Python through the development of an analysis module for data produced by PLACE automation.

Keywords
laboratory automation, Python, open source, laser ultrasound

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from 

http://jla.sagepub.com/


Johnson et al.	 11

acquisition software and data storage through the data anal-
ysis and postprocessing.

Here we present PLACE, an open-source Python pack-
age for Laboratory Automation, Control, and Experimenta-
tion.13 The package is available at https://www.github.com/
johjam/PLACE and contains a core set of instrument driver 
modules for hardware used in the Physical Acoustics 
Laboratory (Table 1). The software is currently used to 
automate laser-generated ultrasound experiments, including 
laser ultrasonics of heterogeneous materials,14 biomedical 
photoacoustic imaging,15 and fracture characterization.16 
However, PLACE accommodates a wide range of applica-
tions and laboratory schemes, as unique modules are writ-
ten for each instrument.

Python-based automation packages are in development, 
such as PyDAQmx,17 pyVISA,18 and Lantz,19 which are 
designed to facilitate communication between a PC and 
laboratory instruments with Python. PLACE’s approach 
differs in that we extend our open-source approach to 
encourage compatibility across all aspects of experimenta-
tion. In addition to instrument drivers, a collection of visu-
alization functions and processing software has been 
developed for data produced by PLACE automation. These 
functions can be called with a single line of code and pro-
vide interactive plotting and data-processing capabilities. 
PLACE drivers use communication protocols standard to 
most personal computers, further supporting portable and 
flexible use. The PLACE package is extensible, such that 
new instruments, packages, or protocols can be easily incor-
porated. For example, parallel processes can be incorpo-
rated by implementing a package such as Parallel Python.20 
Devices requiring proprietary software or libraries often 
cannot be avoided. However, whenever possible, we aim to 
develop open-source drivers that stand alone, rather than as 
wrappers for proprietary code. Naturally, this also requires 
careful hardware consideration. It is our goal to expand this 
repository through continued internal development and 
contributions from the broader community.

PLACE for Laboratory Automation

Python is a powerful, mature tool that possesses many advan-
tageous qualities for laboratory automation. It is open source, 
freely available, and continually growing through the contri-
bution of an international community of developers. Guido 
van Rossum, the founder of Python, was motivated by the 
theory that “readability counts”21; thus, Python syntax was 
designed with clarity at the forefront.22 The standard library 
is well debugged and equipped with extensive built-in mod-
ules. Python is flexible and extensible, competes among the 
fastest languages for computation speed, and requires mini-
mal lines of code for high productivity.22 The cost for numeri-
cal computing of large data sets has been shown to be less 
than 25% higher than pure Fortran code.23 Furthermore, auto-
mation packages written in Python are virtually platform 
independent, as most operating systems—including Linux 
platforms, Windows, and Mac OS X—are supported.

The organization of complex code can be streamlined 
using Python’s object-oriented approach. As illustrated in 
Figure 1, PLACE automation is organized with a unique 
driver module for each instrument. These modules contain 
the fundamental code for communication and control with a 
given instrument. Further hierarchical organization is 
accomplished with the use of classes, subclasses, and func-
tions. A master script imports the driver modules and coor-
dinates the activity of all instruments to perform the tasks 
required for a given protocol. This object-oriented approach 
seamlessly incorporates new instruments or methodologies 
as a laboratory grows and advances.

The PLACE modules developed inhouse rely on well-
established modules in Python repositories (Table 2). These 
include NumPy for scientific computing24 and matplotlib 
for plotting.25 Data are transmitted between the acquisition 
PC and instruments via RS-232, ethernet, and USB using 
pySerial.26 ObsPy is used to define and save header infor-
mation (metadata), store data in a list-like object known as 
a stream,27 and append data to a file dynamically. Saving 
data in an ObsPy-compatible format during acquisition 

Table 1.  Hardware Controlled by PLACE Automation.

Company Instrument Description

Polytec (Irvine, CA) OFV-5000 Controller, OFV-505 Sensor Head Laser Doppler vibrometer
Spectra-Physics (Newport, Irvine, CA) Quanta-Ray INDI Pulsed Nd:YAG laser
Newport XPS Motion Controller Driver for Newport stages
Newport M-IMS1000LM Linear motor stage
Newport URS1000BCC Rotation motor stage
Stanford Research Systems (Sunnyvale, CA) DS345 Function generator
Alazar Tech (Point-Claire, Québec, Canada) ATS660 and ATS9440 PCI oscilloscope card
Tektronix (Beaverton, OR) TDS3014B Oscilloscope

The Alazar Tech oscilloscope cards require a proprietary library, in addition to the PLACE driver module. Devices requiring exclusive libraries or 
software are often inevitable; therefore, robust design incorporating these instruments with an overall open-source system is important.
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allows us to make full use of ObsPy’s capabilities for post-
processing and analysis. ObsPy is designed for processing 
seismological data but has powerful functionality for pro-
cessing waveforms or time series of all kinds. The package 
continues to develop at a rapid pace, yet ObsPy’s test-driven 
approach28 has yielded stable releases on a regular basis.

Data Handling

Robust data handling is essential for automated laboratory 
processes to ensure integrity, accountability, and preserva-
tion of data.28 We ensure effective data management by 
incorporating detailed header information, using an effi-
cient and well-established data format, and dynamically 
saving data to file as it is acquired.

A custom header format was created, which saves the 
unique parameters for each trace (A-scan) as it is acquired. We 
chose to save metadata in a header during acquisition, as 
opposed to using a database, with goals of convenience and 

robust coupling of the metadata to the data it describes. 
Headers standardize laboratory records, simplify postprocess-
ing, and essentially serve as an electronic laboratory notebook. 
As an added benefit, both PLACE and ObsPy functions auto-
matically read and use header parameters, minimizing the 
need to enter arguments manually. For example, a voltage is 
acquired from our vibrometer receiver. The calibration factor 
required to convert the voltage to physical units, such as dis-
placement or particle velocity, is dependent on the choice of 
decoder and settings of the vibrometer receiver. These values 
are held by the vibrometer hardware, which is queried during 
acquisition and recorded in the header. The ObsPy read 
function automatically applies this calibration factor upon 
import. All ObsPy processing that is applied to a stream is also 
recorded in the header, which further supports accurate record 
keeping and reproducibility. Example header information for a 
single trace is shown below.

    network :
    station :
    location:
   channel : CHANNEL_B
starttime: 2014-04-30T21:51:25.449480Z
 endtime : 2014-04-30T21:51:25.449890Z

 sampling_rate: 10000000.0
   delta  : 1e-07
     npts : 4096
    calib  : 50.0
   _format : H5
   averages: 200
calib_unit: nm/V

   comments: shale sample with brass jacket
    decoder: DD-300
 decoder_range: 50mm/s/V
    focus  : 0.919596354167
 max_frequency: 20000000.0
   position: 180.0
position_unit: deg
�processing: [“filter:highpass:{‘freq’: 
100000.0}”]
scan_time: 363.84270525
 source_energy: 200 mJ
time_delay: 0.0

Data are saved in HDF5, the free and open standard hierar-
chical data format. HDF5 is designed for large quantities of 
complex data and efficient I/O. In addition, HDF5 is portable 
across operating systems29 and supported by most program-
ming languages, including C++, java, MATLAB, and Scilab.

Traces with headers are saved dynamically to an HDF5 file 
through the ObsPy, H5py,30 and obspyh531 packages. Within 
the file, traces are appended to a stream. Saving continuously 
reduces concerns with limited buffer memory and ensures data 
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Driver ModuleDriver Module

Module

Instrument InstrumentInstrument
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Figure 1.  Basic organization of PLACE scripts and modules. 
Experimental protocols are defined in the terminal. The master 
script communicates with driver modules developed inhouse to 
automate laboratory instruments. Python modules available from 
repositories or built in to Python are used to complete tasks 
such as plotting, saving data, and serial communication.

Table 2.  Python Packages and Versions Used by PLACE.

Package Version

Python 2.7.7
Obspy 0.9.0
pySerial 2.7
NumPy 1.8.1
matplotlib 1.3.1
SciPy 0.14.0
h5py 2.3.0
obspyh5 0.1.0
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are preserved if acquisition is disturbed. If an experiment must 
be interrupted, automation can be paused and restarted from 
the last position without creating a new data file. In addition, 
multiple experiments with different protocols can be saved to a 
single file. The unique header for each trace ensures the dis-
cernibility of the experiments. Furthermore, when only the 
metadata are required, Obspy can efficiently load the trace 
headers, without unpacking the waveform data.

Implementation of PLACE 
Automation

An example using PLACE for a laser-ultrasonics experi-
ment is presented in Figure 2. First, all options are defined 
in the terminal and imported to the master script. 
Subsequently, the instruments are initialized and header 
information is defined. To perform specific tasks, the mas-
ter script interfaces with individual modules. For example, 
prior to recording a trace, the master script reads the signal 
strength of the vibrometer sensor head through the oscillo-
scope card module. If the signal is suboptimal, the vibrom-
eter module is employed to focus the sensor head until a 
satisfactory signal level is reached. Subsequently, the trace 
is recorded with the oscilloscope card module. The frequency  

content of laser-generated ultrasound experiments ranges 
across the ultrasound spectrum, with up to tens of mega-
hertz generated in applications such as biomedical photo-
acoustic imaging. We are limited strictly by the receiver 
hardware, as acquisition with PLACE and the oscilloscope 
card allow frequencies up to 125 MHz to be recorded. Once 
acquired, the trace and header are saved to an HDF5 file and 
displayed.

Throughout an experiment, progress can be monitored 
both via the terminal output and graphically (Figure 3). 
After each trace is acquired, the most recent trace and the 
cumulative wavefield are displayed with matplotlib. The 
master script prints updates to the terminal with each trace, 
including the approximate time remaining, current trace 
number and stage position, and notifications when the 
vibrometer is refocused. The experiment continues until 
conditions for completion are met.

The setup for a rotational scan of a shale cylinder with 
P-wave anisotropy is shown in Figure 4. The source and 
receiver were aligned and stationary. The shale was mounted 
on a 360° continuous rotational stage, and waveforms were 
acquired over 180°. All experimental parameters were 
defined in the terminal, and the master script was executed 
using the following line of code:

Figure 2.  Example 
implementation of PLACE 
automation for a laser-ultrasound 
scan, where r is the initial position 
vector for each stage, dr is the 
increment for each dimension, and 
rf is the final position vector.
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python Scan.py -t 256 -c B -a 200 -s rot 
-i 0 -x 1 -f 180 -n shale_brass -d DD-300 
-e 200
--comments=‘shale sample with brass 
jacket’

where each parameter is defined in the example Scan.py 
file provided with the PLACE package. The resulting wave-
form data are shown in Figure 4.

PLACE Data Analysis

The first release of PLACE includes an analysis module, 
PALplots. Several visualization functions are incorporated: a 
contour plot for viewing the raw waveforms (Fig. 4), a “wig-
gle” plot that highlights the location of dominant events,  
and a function for viewing the frequency-wavenumber (f-k) 
spectrum. In addition, an f-k filter is included for suppressing 

unwanted or interfering waves within a range of apparent 
velocities. A wiggle plot and f-k spectrum for the shale data are 
shown in Figure 5.

Each PALplots function provides the user with the ability 
to interactively select points in the figure. For the contour 
and wiggle plots, position and time coordinates can be 
dynamically selected and saved to a file. This is useful for 
recording event locations and the time of arrival of particular 
waves. Any line through the origin and a point in the f-k 
domain has a slope corresponding to a velocity value (velocity 
= frequency/wavenumber). The fkfilter function allows 
the user to select a pair of coordinates dynamically and anno-
tates the figure with the corresponding velocities. When sub-
mitted, these coordinates define the range of velocities in the 
data that will be suppressed by the filter. Waves that arrive 
with an apparent velocity within this range will be removed.

Conclusions and Future Work

PLACE is an open source, freely available Python pack-
age for laboratory automation and analysis. The clean, 
object-oriented design provides the freedom to expand and 
customize PLACE to meet the needs of diverse laboratories 
and experiments. Future work includes the development of 
driver modules for scanning mirrors, amplifiers, and addi-
tional stages for three-dimensional scanning. We plan to 
expand the PLACE library of processing software for laser-
generated ultrasound experiments, as well as integrate code 
for resonant ultrasound spectroscopy. Our open-source 
approach spans across the spectrum of experimentation and 
has also fueled the development of open-source hardware. 
This includes projects such as seismometers for primary 
and secondary education32 and an open-source laser Doppler 
vibrometer. PLACE has been thoroughly tested under the 
Linux operating system and has shown functionality across 
platforms. However, future work includes additional testing 
under Windows and Mac OS X operating systems. We aim 

Figure 3.  Screenshot of the most recent trace and cumulative 
wavefield during laser-ultrasound scan of a sandstone sample.

Figure 4.  (Left) Setup for rotation 
scan of a shale sample with brass jacket. 
(Right) Resulting laser-ultrasound 
wavefield of shale. The colored regions 
represent the arrival of ultrasound waves 
after propagating through the sample. 
The shale shows significant P-wave 
anisotropy: the speed of sound in the 
rock varies depending on the direction 
of propagation. Note the delayed arrival 
time of waves around 90° compared with 
those at the margins of the scan.
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to actively develop additional modules and software and we 
encourage contribution from the community.
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