
Journal of Laboratory Automation
2015, Vol. 20(1) 10–16
© 2014 Society for Laboratory
Automation and Screening
DOI: 10.1177/2211068214553022
jala.sagepub.com

Original Report

Introduction

The open-source software (OSS) movement traces back to
the 1950s,1 when voluntary organizations such as Share—
an intermediary between IBM and its users—pursued col-
laboration and reduced programming costs by leveraging
diverse expertise and practices of academic exchange.2
However, notable developments, such as the launch of the
GNU Project in 19843 and Netscape’s decision to release
the source code for its Internet browser in 1998,1 signifi-
cantly increased interest in the movement. More recently,
examples such as the Linux operating system,4 WordPress
for blogging,5 and Google Chrome for Internet browsing6
have further demonstrated the potential for successful open-
source projects. A majority of code developed under the
umbrella of “open source” is distributed either free or for a
nominal charge, but the primary distinguishing feature is
the freedom to use, modify, and distribute source code
under a public, unrestricted license.1,7

Laboratories built on the principles of the open-source
movement have been in existence for decades.8 Beyond the
obvious benefit of reducing laboratory running costs, there
are many advantages of an open-source laboratory.
Collaborative development fuels software capabilities to be
expanded beyond what is plausible through the efforts of a
single development team.9 When open-source code is effec-
tively disseminated, there is a community of programmers

available for testing.10 Therefore, some of the burden of
validation is taken over by the community, errors are
reduced, and reliability and traceability are improved.9 In
the spirit of Eric Raymond’s proclaimed Linus’s Law,
“given enough eyeballs, all bugs are shallow.”11

Perspectives toward OSS are changing, as the tools we
use become increasingly open source. Still, laboratory auto-
mation remains an uncommon field of open software devel-
opment.9 When proprietary automation packages are used,
specialized software is often required to both acquire and
read the data. This causes difficulties in exchanging data
across computers or operating systems and incurs extra cost
and licensing issues.12 For collaborative research, it is ben-
eficial for all contributors to use the same software. Open-
source systems facilitate this with a minimal amount of cost
and inconvenience. Altogether, it is favorable to use a soft-
ware platform that is completely open source, from the

553022 JLAXXX10.1177/2211068214553022Journal of Laboratory AutomationJohnson et al.
research-article2014

1Department of Physics, University of Auckland, Auckland, New Zealand
2Institute for Nonlinear Dynamics, Georg-August-Universität, Göttingen,
Germany

Received Jun 25, 2014.

Corresponding Author:
Jami L. Johnson, Department of Physics, University of Auckland, 38
Princes Street, The Science Center, Auckland 1010, New Zealand.
Email: jami.johnson@auckland.ac.nz

PLACE: An Open-Source Python Package
for Laboratory Automation, Control,
and Experimentation

Jami L. Johnson1, Henrik tom Wörden2, and Kasper van Wijk1

Abstract
In modern laboratories, software can drive the full experimental process from data acquisition to storage, processing,
and analysis. The automation of laboratory data acquisition is an important consideration for every laboratory. When
implementing a laboratory automation scheme, important parameters include its reliability, time to implement, adaptability,
and compatibility with software used at other stages of experimentation. In this article, we present an open-source, flexible,
and extensible Python package for Laboratory Automation, Control, and Experimentation (PLACE). The package uses
modular organization and clear design principles; therefore, it can be easily customized or expanded to meet the needs of
diverse laboratories. We discuss the organization of PLACE, data-handling considerations, and then present an example
using PLACE for laser-ultrasound experiments. Finally, we demonstrate the seamless transition to post-processing and
analysis with Python through the development of an analysis module for data produced by PLACE automation.

Keywords
laboratory automation, Python, open source, laser ultrasound

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

http://jla.sagepub.com/

Johnson et al.	 11

acquisition software and data storage through the data anal-
ysis and postprocessing.

Here we present PLACE, an open-source Python pack-
age for Laboratory Automation, Control, and Experimenta-
tion.13 The package is available at https://www.github.com/
johjam/PLACE and contains a core set of instrument driver
modules for hardware used in the Physical Acoustics
Laboratory (Table 1). The software is currently used to
automate laser-generated ultrasound experiments, including
laser ultrasonics of heterogeneous materials,14 biomedical
photoacoustic imaging,15 and fracture characterization.16
However, PLACE accommodates a wide range of applica-
tions and laboratory schemes, as unique modules are writ-
ten for each instrument.

Python-based automation packages are in development,
such as PyDAQmx,17 pyVISA,18 and Lantz,19 which are
designed to facilitate communication between a PC and
laboratory instruments with Python. PLACE’s approach
differs in that we extend our open-source approach to
encourage compatibility across all aspects of experimenta-
tion. In addition to instrument drivers, a collection of visu-
alization functions and processing software has been
developed for data produced by PLACE automation. These
functions can be called with a single line of code and pro-
vide interactive plotting and data-processing capabilities.
PLACE drivers use communication protocols standard to
most personal computers, further supporting portable and
flexible use. The PLACE package is extensible, such that
new instruments, packages, or protocols can be easily incor-
porated. For example, parallel processes can be incorpo-
rated by implementing a package such as Parallel Python.20
Devices requiring proprietary software or libraries often
cannot be avoided. However, whenever possible, we aim to
develop open-source drivers that stand alone, rather than as
wrappers for proprietary code. Naturally, this also requires
careful hardware consideration. It is our goal to expand this
repository through continued internal development and
contributions from the broader community.

PLACE for Laboratory Automation

Python is a powerful, mature tool that possesses many advan-
tageous qualities for laboratory automation. It is open source,
freely available, and continually growing through the contri-
bution of an international community of developers. Guido
van Rossum, the founder of Python, was motivated by the
theory that “readability counts”21; thus, Python syntax was
designed with clarity at the forefront.22 The standard library
is well debugged and equipped with extensive built-in mod-
ules. Python is flexible and extensible, competes among the
fastest languages for computation speed, and requires mini-
mal lines of code for high productivity.22 The cost for numeri-
cal computing of large data sets has been shown to be less
than 25% higher than pure Fortran code.23 Furthermore, auto-
mation packages written in Python are virtually platform
independent, as most operating systems—including Linux
platforms, Windows, and Mac OS X—are supported.

The organization of complex code can be streamlined
using Python’s object-oriented approach. As illustrated in
Figure 1, PLACE automation is organized with a unique
driver module for each instrument. These modules contain
the fundamental code for communication and control with a
given instrument. Further hierarchical organization is
accomplished with the use of classes, subclasses, and func-
tions. A master script imports the driver modules and coor-
dinates the activity of all instruments to perform the tasks
required for a given protocol. This object-oriented approach
seamlessly incorporates new instruments or methodologies
as a laboratory grows and advances.

The PLACE modules developed inhouse rely on well-
established modules in Python repositories (Table 2). These
include NumPy for scientific computing24 and matplotlib
for plotting.25 Data are transmitted between the acquisition
PC and instruments via RS-232, ethernet, and USB using
pySerial.26 ObsPy is used to define and save header infor-
mation (metadata), store data in a list-like object known as
a stream,27 and append data to a file dynamically. Saving
data in an ObsPy-compatible format during acquisition

Table 1.  Hardware Controlled by PLACE Automation.

Company Instrument Description

Polytec (Irvine, CA) OFV-5000 Controller, OFV-505 Sensor Head Laser Doppler vibrometer
Spectra-Physics (Newport, Irvine, CA) Quanta-Ray INDI Pulsed Nd:YAG laser
Newport XPS Motion Controller Driver for Newport stages
Newport M-IMS1000LM Linear motor stage
Newport URS1000BCC Rotation motor stage
Stanford Research Systems (Sunnyvale, CA) DS345 Function generator
Alazar Tech (Point-Claire, Québec, Canada) ATS660 and ATS9440 PCI oscilloscope card
Tektronix (Beaverton, OR) TDS3014B Oscilloscope

The Alazar Tech oscilloscope cards require a proprietary library, in addition to the PLACE driver module. Devices requiring exclusive libraries or
software are often inevitable; therefore, robust design incorporating these instruments with an overall open-source system is important.

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

https://www.github.com/johjam/PLACE
http://jla.sagepub.com/

12	 Journal of Laboratory Automation 20(1)

allows us to make full use of ObsPy’s capabilities for post-
processing and analysis. ObsPy is designed for processing
seismological data but has powerful functionality for pro-
cessing waveforms or time series of all kinds. The package
continues to develop at a rapid pace, yet ObsPy’s test-driven
approach28 has yielded stable releases on a regular basis.

Data Handling

Robust data handling is essential for automated laboratory
processes to ensure integrity, accountability, and preserva-
tion of data.28 We ensure effective data management by
incorporating detailed header information, using an effi-
cient and well-established data format, and dynamically
saving data to file as it is acquired.

A custom header format was created, which saves the
unique parameters for each trace (A-scan) as it is acquired. We
chose to save metadata in a header during acquisition, as
opposed to using a database, with goals of convenience and

robust coupling of the metadata to the data it describes.
Headers standardize laboratory records, simplify postprocess-
ing, and essentially serve as an electronic laboratory notebook.
As an added benefit, both PLACE and ObsPy functions auto-
matically read and use header parameters, minimizing the
need to enter arguments manually. For example, a voltage is
acquired from our vibrometer receiver. The calibration factor
required to convert the voltage to physical units, such as dis-
placement or particle velocity, is dependent on the choice of
decoder and settings of the vibrometer receiver. These values
are held by the vibrometer hardware, which is queried during
acquisition and recorded in the header. The ObsPy read
function automatically applies this calibration factor upon
import. All ObsPy processing that is applied to a stream is also
recorded in the header, which further supports accurate record
keeping and reproducibility. Example header information for a
single trace is shown below.

    network :
    station :
    location:
   channel : CHANNEL_B
starttime: 2014-04-30T21:51:25.449480Z
 endtime : 2014-04-30T21:51:25.449890Z

 sampling_rate: 10000000.0
 delta  : 1e-07
 npts : 4096
 calib  : 50.0
   _format : H5
   averages: 200
calib_unit: nm/V

 comments: shale sample with brass jacket
    decoder: DD-300
 decoder_range: 50mm/s/V
 focus  : 0.919596354167
 max_frequency: 20000000.0
   position: 180.0
position_unit: deg
�processing: [“filter:highpass:{‘freq’:
100000.0}”]
scan_time: 363.84270525
 source_energy: 200 mJ
time_delay: 0.0

Data are saved in HDF5, the free and open standard hierar-
chical data format. HDF5 is designed for large quantities of
complex data and efficient I/O. In addition, HDF5 is portable
across operating systems29 and supported by most program-
ming languages, including C++, java, MATLAB, and Scilab.

Traces with headers are saved dynamically to an HDF5 file
through the ObsPy, H5py,30 and obspyh531 packages. Within
the file, traces are appended to a stream. Saving continuously
reduces concerns with limited buffer memory and ensures data

Terminal

Driver Module

Master Script

Driver ModuleDriver Module

Module

Instrument InstrumentInstrument

Module

Figure 1.  Basic organization of PLACE scripts and modules.
Experimental protocols are defined in the terminal. The master
script communicates with driver modules developed inhouse to
automate laboratory instruments. Python modules available from
repositories or built in to Python are used to complete tasks
such as plotting, saving data, and serial communication.

Table 2.  Python Packages and Versions Used by PLACE.

Package Version

Python 2.7.7
Obspy 0.9.0
pySerial 2.7
NumPy 1.8.1
matplotlib 1.3.1
SciPy 0.14.0
h5py 2.3.0
obspyh5 0.1.0

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

http://jla.sagepub.com/

Johnson et al.	 13

are preserved if acquisition is disturbed. If an experiment must
be interrupted, automation can be paused and restarted from
the last position without creating a new data file. In addition,
multiple experiments with different protocols can be saved to a
single file. The unique header for each trace ensures the dis-
cernibility of the experiments. Furthermore, when only the
metadata are required, Obspy can efficiently load the trace
headers, without unpacking the waveform data.

Implementation of PLACE
Automation

An example using PLACE for a laser-ultrasonics experi-
ment is presented in Figure 2. First, all options are defined
in the terminal and imported to the master script.
Subsequently, the instruments are initialized and header
information is defined. To perform specific tasks, the mas-
ter script interfaces with individual modules. For example,
prior to recording a trace, the master script reads the signal
strength of the vibrometer sensor head through the oscillo-
scope card module. If the signal is suboptimal, the vibrom-
eter module is employed to focus the sensor head until a
satisfactory signal level is reached. Subsequently, the trace
is recorded with the oscilloscope card module. The frequency

content of laser-generated ultrasound experiments ranges
across the ultrasound spectrum, with up to tens of mega-
hertz generated in applications such as biomedical photo-
acoustic imaging. We are limited strictly by the receiver
hardware, as acquisition with PLACE and the oscilloscope
card allow frequencies up to 125 MHz to be recorded. Once
acquired, the trace and header are saved to an HDF5 file and
displayed.

Throughout an experiment, progress can be monitored
both via the terminal output and graphically (Figure 3).
After each trace is acquired, the most recent trace and the
cumulative wavefield are displayed with matplotlib. The
master script prints updates to the terminal with each trace,
including the approximate time remaining, current trace
number and stage position, and notifications when the
vibrometer is refocused. The experiment continues until
conditions for completion are met.

The setup for a rotational scan of a shale cylinder with
P-wave anisotropy is shown in Figure 4. The source and
receiver were aligned and stationary. The shale was mounted
on a 360° continuous rotational stage, and waveforms were
acquired over 180°. All experimental parameters were
defined in the terminal, and the master script was executed
using the following line of code:

Figure 2.  Example
implementation of PLACE
automation for a laser-ultrasound
scan, where r is the initial position
vector for each stage, dr is the
increment for each dimension, and
rf is the final position vector.

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

http://jla.sagepub.com/

14	 Journal of Laboratory Automation 20(1)

python Scan.py -t 256 -c B -a 200 -s rot
-i 0 -x 1 -f 180 -n shale_brass -d DD-300
-e 200
--comments=‘shale sample with brass
jacket’

where each parameter is defined in the example Scan.py
file provided with the PLACE package. The resulting wave-
form data are shown in Figure 4.

PLACE Data Analysis

The first release of PLACE includes an analysis module,
PALplots. Several visualization functions are incorporated: a
contour plot for viewing the raw waveforms (Fig. 4), a “wig-
gle” plot that highlights the location of dominant events,
and a function for viewing the frequency-wavenumber (f-k)
spectrum. In addition, an f-k filter is included for suppressing

unwanted or interfering waves within a range of apparent
velocities. A wiggle plot and f-k spectrum for the shale data are
shown in Figure 5.

Each PALplots function provides the user with the ability
to interactively select points in the figure. For the contour
and wiggle plots, position and time coordinates can be
dynamically selected and saved to a file. This is useful for
recording event locations and the time of arrival of particular
waves. Any line through the origin and a point in the f-k
domain has a slope corresponding to a velocity value (velocity
= frequency/wavenumber). The fkfilter function allows
the user to select a pair of coordinates dynamically and anno-
tates the figure with the corresponding velocities. When sub-
mitted, these coordinates define the range of velocities in the
data that will be suppressed by the filter. Waves that arrive
with an apparent velocity within this range will be removed.

Conclusions and Future Work

PLACE is an open source, freely available Python pack-
age for laboratory automation and analysis. The clean,
object-oriented design provides the freedom to expand and
customize PLACE to meet the needs of diverse laboratories
and experiments. Future work includes the development of
driver modules for scanning mirrors, amplifiers, and addi-
tional stages for three-dimensional scanning. We plan to
expand the PLACE library of processing software for laser-
generated ultrasound experiments, as well as integrate code
for resonant ultrasound spectroscopy. Our open-source
approach spans across the spectrum of experimentation and
has also fueled the development of open-source hardware.
This includes projects such as seismometers for primary
and secondary education32 and an open-source laser Doppler
vibrometer. PLACE has been thoroughly tested under the
Linux operating system and has shown functionality across
platforms. However, future work includes additional testing
under Windows and Mac OS X operating systems. We aim

Figure 3.  Screenshot of the most recent trace and cumulative
wavefield during laser-ultrasound scan of a sandstone sample.

Figure 4.  (Left) Setup for rotation
scan of a shale sample with brass jacket.
(Right) Resulting laser-ultrasound
wavefield of shale. The colored regions
represent the arrival of ultrasound waves
after propagating through the sample.
The shale shows significant P-wave
anisotropy: the speed of sound in the
rock varies depending on the direction
of propagation. Note the delayed arrival
time of waves around 90° compared with
those at the margins of the scan.

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

http://jla.sagepub.com/

Johnson et al.	 15

to actively develop additional modules and software and we
encourage contribution from the community.

Acknowledgments

J.L.J. thanks the University of Auckland Doctoral Scholarship for
doctoral study support. The authors would like to give a special
thanks to Dr. John Scales, Colorado School of Mines, for input
that has improved this article and PLACE, as well as the naming
of the package. In addition, thanks to Dr. Thomas Lecocq, the
Royal Observatory of Belgium, for his helpful suggestions.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article:
J.L.J. thanks the University of Auckland Doctoral Scholarship for
doctoral study support.

References

	 1.	 Androutsellis-Theotokis, S; Spinellis, D.; Kechagia, M.; et al.
Open Source Software: A Survey from 10,000 Feet. Found.
Trends. Tech. Info. OM. 2011, 4, 187–347.

	 2.	 Akera, A. Voluntarism and the Fruits of Collaboration: The
IBM User Group, Share. Technol. Cult. 2001, 42, 710–736.

	 3.	 Stallman, R. M. The GNU Manifesto. Dr. Dobb’s J. 1985, 10,
30–35.

	 4.	 Torvalds, L. The Linux Edge. Commun. ACM. 1999, 42, 38–39.
	 5.	 Douglass, R. T; Little, M.; Smith, J. W. Building Online

Communities with Drupal, phpBB, and WordPress; Springer:
New York, 2006.

	 6.	 Gray, J. Google Chrome: The Making of a Cross-Platform
Browser. Linux J. 2009, 185.

	 7.	 Stallman, R. M. The GNU Operating System and the Free
Software Movement. In Open Sources: Voices from the Open
Source Revolution; DiBona, C., Ockman, S., Stone, M., Eds.;
O’Reilly Media: Sebastopol, CA, 1999; pp 53–70.

	 8.	 Scales, J. A; Smith, M. L; Ballüder, K. Selecting an Operating
System, Part III: Unix in a Laboratory Environment. Comput.
Phys. 1995, 9, 584–588.

	 9.	 Benn, N. D; Liscouski, J. Discussion of Open-Source
Methodologies in Laboratory Automation. J. Lab. Autom.
2009, 14, 82–89.

	10.	 Morgan, L.; Finnegan, P. Benefits and Drawbacks of Open
Source Software: An Exploratory Study of Secondary
Software Firms. In Open Source Development, Adoption and
Innovation; Feller, J., Fitzgerald, B., Scacchi, W.; et al., Eds.;
Springer: New York, 2007; pp 307–312.

	11.	 Raymond, E. The Cathedral and the Bazaar. Knowledge,
Technology & Policy 1999, 12, 23–49.

	12.	 Nielsen, K.; Andersen, T.; Jensen, R.; et al. An Open-Source
Data Storage and Visualization Back End for Experimental
Data. J. Lab. Autom. 2014, 19, 183–190.

	13.	 Van Rossum, G.; Drake, F. L., Jr. Python Tutorial; Centrum
voor Wiskunde en Informatica: The Netherlands, 1995.

	14.	 Blum, T. E.; Adam, L.; van Wijk, K. Noncontacting Benchtop
Measurements of the Elastic Properties of Shales. Geophysics
2013, 78, C25–C31.

	15.	 Johnson, J. L.; van Wijk, K.; Sabick, M. Characterizing
Phantom Arteries with Multi-Channel Laser Ultrasonics and
Photo-Acoustics. Ultrasound Med. Biol. 2014, 4, 513–520.

	16.	 Blum, T. E.; van Wijk, K.; Snieder, R. Scattering Amplitude
of a Single Fracture under Uniaxial Stress. Geophys. J. Int.
2014, 197, 875–881.

	17.	 Cladé, P. PyDAQmx: A Python Interface to the National
Instruments DAQmx Driver. http://packages.python.org/
PyDAQmx (accessed Aug 21, 2014).

Figure 5.  Example plots for the shale sample with brass jacket created with the PALplots module. (Left) Wiggle plot. (Right)
Frequency-wavenumber spectrum of shale. Selected points are shown with the corresponding apparent velocity annotated. These
points can be used to define the limits of an f-k filter.

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

http://packages.python.org/PyDAQmx
http://jla.sagepub.com/

16	 Journal of Laboratory Automation 20(1)

	18.	 Bronger, T.; Thalhammer, G. PyVISA: Python Wrapper for
the VISA Library. http://pyvisa.readthedocs.org (accessed
Aug 21, 2014).

	19.	 Grecco, H. E.; Masip, M.; Jais, P.; et al. Lantz: An Automation
and Instrumentation Toolkit in Python. http://lantz.glugcen
.dc.uba.ar (accessed Aug 21, 2014).

	20.	 Palach, J. Parallel Programming with Python; Packt
Publishing Ltd: Birmingham, UK, 2014.

	21.	 Day, C. Python Power. Comput. Sci. Eng. 2014, 16, 88–88.
	22.	 Prechelt, L. Are Scripting Languages Any Good? A Validation

of Perl, Python, Rexx, and Tcl against C, C++, and Java. Adv.
Comput. 2003, 57, 205–270.

	23.	 Yuffa, A. J.; Scales, J. A. Object-Oriented Electrodynamic
S-matrix Code with Modern Applications. J. Comput. Phys.
2012, 23, 4823–4835.

	24.	 Oliphant, T. E. Python for Scientific Computing. Comput. Sci.
Eng. 2007, 9, 10–20.

	25.	 Hunter, J. D. Matplotlib: A 2D Graphics Environment.
Comput. Sci. Eng. 2007, 9, 90–95.

	26.	 Liechti, C. pySerial. http://pyserial.sourceforge.net (accessed
May 8, 2014).

	27.	 Beyreuther, M.; Barsch, R.; Kirscher, L.; et al. ObsPy: A
Python Toolbox for Seismology. Seismol. Res. Lett. 2010, 81,
530–533.

	28.	 Iverson, M.; Frankel, M. S.; Siang, S. Scientific Societies and
Research Integrity: What Are They Doing and How Well Are
They Doing It? Sci. Eng. Ethics 2003, 9, 141–158.

	29.	 Koziol, Q. HDF5. In Encyclopedia of Parallel Computing;
Padua, D., Ed. Springer: New York, 2011; 4, 827–833.

	31.	 Collette, A. HDF5 for Python. http://docs.h5py.org (accessed
May 8, 2014).

	31.	 Richter, T. obspyh5. https://github.com/trichter/obspyh5
(accessed May 8, 2014).

	32.	 van Wijk, K.; Channel, T.; Viskupic, K.; et al. Teaching
Geophysics with a Vertical-Component Seismometer. Physics
Teacher 2013, 51, 552–554.

 at The University of Auckland Library on January 22, 2015jla.sagepub.comDownloaded from

http://lantz.glugcen.dc.uba.ar
http://jla.sagepub.com/

