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Background

• Seasonal differences in vine yield need to be managed to ensure 
appropriate fruit composition at harvest.

• Weather conditions at flowering can cause knock-on events later in 
the growing season. 

• Therefore early indications of yield are important in knowing what 
management practices must be undertaken during to give optimum 
yield.



Aims

• Develop a tool which can assist New Zealand vineyard owners in 
performing early predictions of grape yield.

• Improve upon current yield estimation practices in the industry.



Introduction
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• Studies involving value of added information and vague vs. informed priors

• Results
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Understanding how grapes grow

• Grapevines are a biennial plant (two year growth 
cycles).

• Generally, grapevine yield develops over a 15-month 
period.

• During the growing season up to harvest, the grape 
berries venture through many growth phases:
• An initial period where flowers change to fruits,
• A lag phase, which leads up to berry ripening 

(véraison),
• A second growth phase where sugars and water 

start to accumulate in the berry.



Grape Growth Characteristics

• Early work in understanding the phenology of grapes indicated a double sigmoidal growth pattern 
(Coombe, 1976).

Yieldi = 
α0

1+𝑒−γ0(𝑡𝑖−β0)
+ 

α1

1+𝑒−γ1(𝑡𝑖−β1)
+ ε𝑖

• α0 and α1 are the asymptote parameters

• γ0 and γ1 are the slope coefficients

• β0 and β1 identify the location of the inflection points

• εi ~ N(0, σ2) is the error term for the model.



Bunch Weight Data

2016/2017 Growing Season 2017/2018 Growing Season

• 30 grape bunches in 2016/2017, and 32 grape bunches in 2017/2018, were destructively sampled. Weight measurements taken, at 14 time 
points throughout the respective growing seasons. 

• Half of the bunches were taken from apical shoots, and half from basal shoots.



Bayesian Model Analysis

• One aim of this work is to determine the Value of Information (VOI) for this area of 
analysis. 

• Double Sigmoidal Model is re-fitted iteratively with the inclusion of each new day’s 
bunch weight. 
• Do the final yield estimates improve significantly upon doing this?

• The other aim involves determining the impact of incorporating historical data into the 
modelling procedure. 
• Will having yield data from previous years improve the estimates for the current growing season?



Derivation of Priors

• Firstly, a set of weakly informative priors were found by assessing the shape of the grape growth 
curve (on a log scale), and allowing for small precision (high variance) in each of the parameters.

• Two other sets of priors were obtained via parametric approximation of the posterior 
distributions from analyzing the 2016/2017 and 2017/2018 apical bunches respectively.

Coefficient Prior

α0 N(4.09, 0.11)

Δα TN(0.69, 4, 0)

β0 N(35, 0.02)

Δβ TN(49, 0.11, 0)

γ0 TN(0.3,44.44, 0)

γ1 TN(0.3, 44.44, 0)

τ Gamma(4,1)

N = Normal Distribution
TN = Truncated Normal Distribution



Comparing yield estimates with different priors



Mean Absolute Error measurements 
comparing final yield estimates

• The vague priors are fitted to the Bayesian 
Model.

• MAE measures comparing final yield 
estimates with the actual yield for the 
respective groups were found iteratively.

• Value of Information is obvious here. 



Simulation Studies

• Having data of the quality we have is hard to come by:
• Vineyard owners typically do not conduct weekly destructive measurements 

of their bunches for a variety of reasons.

• 100 data sets based on the parameters derived from the 2016/2017 
apical bunch weight data were simulated 

• Priors derived previously then fit to the Bayesian model in each case, 
and MAE, MPE measures, alongside finding the 95% credible intervals  



Vague Priors

2017 Apical-Informed Priors

2018 Apical-Informed Priors



Mean Absolute Error and Mean Percentage 
Error results. 



Conclusions

• In these studies, the Bayesian Model is sensitive to prior assumptions.

• Having a non-informative (vague) prior may be more beneficial in 
producing final yield estimates, than having informed priors based on 
one unusual year.

• Evident trade-off between early final yield prediction vs. accurate final 
yield prediction.

• A Bayesian framework is useful in this context, due to its ability to 
update model estimates as new data comes in. 
• This is important due to the dynamical nature of grape growth.



Future Work

• Publication of this work.

• Modelling the bunch weight data on a temperature scale (Growing 
Degree Days).

• Analyzing climatic impacts in Bayesian Modelling procedure. 

• Implementing MCMC methods (Metropolis-Hastings Algorithm) to 
estimate the Bayesian Model.

• Explore other nonlinear model specifications 



Climatic Impacts

• There are two ways of considering this:
• Firstly, can the bunch weight data be modelled on a scale relating to temperature, instead of 

calendar days?

• Secondly, would factors like temperature, rainfall, or solar radiation impact the parameters of 
the Bayesian model?

• Growing Degree Days are found by summing the average temperatures over the 
sequence of days up to the day of measurement.
• Starting point is July 1 in the Southern Hemisphere. e.g. 2016/2017 growing season begins on 

July 1 2016. 



Comparison of Calendar Day and Growing 
Degree Day Scale



Different Specifications of the Double 
Sigmoidal Curve
• The current double logistic model fits well to the 2017/18 growing 

season data in particular. 

• One particular issue may be asymmetry in the grape growth during 
the growing season.

• There are other model specifications which combat this issue.



Different Specifications of the Double 
Sigmoidal Curve:
• 5-parameter Logistic :

• y =
α0

1+𝑒−γ0(𝑡−β0)
𝑒0 +

α1

1+𝑒−γ1(𝑡−β1)
𝑒1 + ε𝑖 e0, e1 = asymmetry parameters

• Richards (Richards 1959):

• y =
α0

(1+𝑘0𝑒
−γ0 𝑡−𝑡𝑚0 )

ൗ1 𝑘0

+
α1

(1+𝑘1𝑒
−γ1 𝑡−𝑡𝑚1 )

ൗ1 𝑘1

+ ε𝑖

• Gompertz (Gompertz 1825): 

• 𝑦 = α0𝑒
𝑒−γ0 𝑡−β0 + α1𝑒

𝑒−γ1 𝑡−β1

• Weibull (Weibull 1951):

• 𝑦 = α0 1−𝑒
− ൗ𝑡 β0

𝑐0

+ α1 1−𝑒
− ൗ𝑡 β1

𝑐1

c0, c1 = shape parameters

k0, k1 fix point of inflection

tm0, tm1 = time of maximum growth
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