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Background

* Seasonal differences in vine yield need to be managed to ensure
appropriate fruit composition at harvest.

* Weather conditions at flowering can cause knock-on events later in
the growing season.

* Therefore early indications of yield are important in knowing what
management practices must be undertaken during to give optimum
yield.



Alms

* Develop a tool which can assist New Zealand vineyard owners in
performing early predictions of grape yield.

* Improve upon current yield estimation practices in the industry.



Introduction

* Understanding Grape Growth

e Bayesian Model Analysis
* Derivation of Priors
 Studies involving value of added information and vague vs. informed priors

e Results
e Conclusions
e Future Work



Understanding how grapes grow

Grapevines are a biennial plant (two year growth

cycles).

Generally, grapevine yield develops over a 15-month

period.

During the growing season up to harvest, the grape

berries venture through many growth phases:

An initial period where flowers change to fruits,
A lag phase, which leads up to berry ripening
(véraison),

A second growth phase where sugars and water
start to accumulate in the berry.
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Grape Growth Characteristics

Early work in understanding the phenology of grapes indicated a double sigmoidal growth pattern
(Coombe, 1976).
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Bunch Weight Data

30 grape bunches in 2016/2017, and 32 grape bunches in 2017/2018, were destructively sampled. Weight measurements taken, at 14 time

points throughout the respective growing seasons.
Half of the bunches were taken from apical shoots, and half from basal shoots.
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Bayesian Model Analysis

. OneI aim of this work is to determine the Value of Information (VOI) for this area of
analysis.

Double Sigmoidal Model is re-fitted iteratively with the inclusion of each new day’s
bunch weight.

* Do the final yield estimates improve significantly upon doing this?

* The other aim involves determining the impact of incorporating historical data into the
modelling procedure.

* Will having yield data from previous years improve the estimates for the current growing season?



Derivation of Priors

* Firstly, a set of weakly informative priors were found by assessing the shape of the grape growth
curve (on a log scale), and allowing for small precision (high variance) in each of the parameters.

Coefficient Prior

%o N(4.09, 0.11)
fa TN(0.69, 4, 0)
B N(35, 0.02) N = Normal Distribution

: - TN = Truncated Normal Distribution
AB TN(49, 0.11, 0)
Yo TN(0.3,44.44, 0)
Vi TN(0.3, 44.44, 0)
t Gamma(4,1)

* Two other sets of priors were obtained via parametric approximation of the posterior
distributions from analyzing the 2016/2017 and 2017/2018 apical bunches respectively.



Comparing yield estimates with different priors
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Mean Absolute Error

Mean Abso

ute Error measurements

comparing

‘inal yield estimates

—e— 2016/2017 apical
—e— 2016/2017 basal
== 2017/2018 apical
== 2017/2018 basal

 The vague priors are fitted to the Bayesian
Model.

 MAE measures comparing final yield
estimates with the actual yield for the
respective groups were found iteratively.

* Value of Information is obvious here.




Simulation Studies

* Having data of the quality we have is hard to come by:

* Vineyard owners typically do not conduct weekly destructive measurements
of their bunches for a variety of reasons.

* 100 data sets based on the parameters derived from the 2016/2017
apical bunch weight data were simulated

* Priors derived previously then fit to the Bayesian model in each case,
and MAE, MPE measures, alongside finding the 95% credible intervals
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Mean Absolute Error and Mean Percentage
Error results.
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Conclusions

* In these studies, the Bayesian Model is sensitive to prior assumptions.

* Having a non-informative (vague) prior may be more beneficial in
producing final yield estimates, than having informed priors based on

one unusual year.

* Evident trade-off between early final yield prediction vs. accurate final
vield prediction.

* A Bayesian framework is useful in this context, due to its ability to
update model estimates as new data comes in.
* This is important due to the dynamical nature of grape growth.



Future Work

e Publication of this work.

* Modelling the bunch weight data on a temperature scale (Growing
Degree Days).

* Analyzing climatic impacts in Bayesian Modelling procedure.

* Implementing MCMC methods (Metropolis-Hastings Algorithm) to
estimate the Bayesian Model.

* Explore other nonlinear model specifications



Climatic Impacts

* There are two ways of considering this:
* Firstly, can the bunch weight data be modelled on a scale relating to temperature, instead of

calendar days?
* Secondly, would factors like temperature, rainfall, or solar radiation impact the parameters of

the Bayesian model?

* Growing Degree Days are found by summing the average temperatures over the

sequence of days up to the day of measurement.
 Starting point is July 1 in the Southern Hemisphere. e.g. 2016/2017 growing season begins on

July 1 2016.



Comparison of Calendar Day and Growing
Degree Day Scale

Plotting Grape Bunch Weight on Calendar Day Scale Plotting Grape Bunch Weight on Growing Degree Day Scale
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Different Specifications of the Double
Sigmoidal Curve

* The current double logistic model fits well to the 2017/18 growing
season data in particular.

* One particular issue may be asymmetry in the grape growth during
the growing season.

* There are other model specifications which combat this issue.



Different Specifications of the Double

Sigmoidal Curve:

* 5-parameter Logistic :
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* Richards (Richards 1959):
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 Gompertz (Gompertz 1825):
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* Weibull (Weibull 1951):
* Y= ao(l—e_(t/BO)Co) + al(l—e_(t/ﬁl)C1)

€9, €1 = asymmetry parameters

Ko, K; fiXx point of inflection
to: {1 = time of maximum growth

Co, C; = Shape parameters
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