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Statistics in cricket

• Many previous statistical studies in cricket

– Optimising playing strategies (Swartz et al., 2006;

Norman & Clarke, 2010)

– Achieving a fair result in weather affected matches

(Duckworth & Lewis, 1998)

– Outcome prediction (Swartz et al., 2009)

...less attention on measuring and predicting player

performance

• Our focus is on measuring player batting ability

• Batting ability primarily recognised using a single number

• Batting average = Total # runs scored
Total # dismissals
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‘Getting your eye in’

Batting is initially difficult due to external factors such as:

• The local pitch and weather conditions
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Pitch conditions

Day 1 pitch.

Day 5 pitch.
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‘Getting your eye in’

Batting is initially difficult due to external factors such as:

• The local pitch and weather conditions

• The specific match scenario

The process of batsmen familiarising themselves with the

match conditions is nicknamed ‘getting your eye in’.
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Predicting the hazard

• Hazard = probability of a batsmen being dismissed on

their current score

• Due to the ‘eye in’ process, a constant hazard model is no

good for predicting when a batsman will get out

– Will under predict dismissal probability for low scores

– Will over predict dismissal probability for high scores (i.e.

when a player has their ‘eye in’)
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Predicting the hazard

Therefore it would be of practical use to develop models which

quantify:

1. How well a player bats when they first begin an innings

2. How much better a player bats when they have their ‘eye

in’

3. How long it takes them to get their ‘eye in’
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Kane Williamson’s career record

Credit:www.cricinfo.com 10



Initial aim

1. Develop models which quantify a player’s batting ability

at any stage of an innings

• Models should provide a better measure of player ability

than the batting average

• Fitted within a Bayesian framework:

– Nested sampling (Skilling, 2006)

– C++, Julia & R
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Deriving the model likelihood

If X ∈ {0, 1, 2, 3, ...} is the number of runs scored by a

batsman:

Hazard function = H(x)

= P(X = x |X ≥ x)

H(x) = The probability of getting out on score x , given you

made it to score x

12



Data

Fit the model to player career data:

Runs Out/not out

13 0

42 0

53 0

104 1

2 0

130 0

2 0

1 0

176 0

• 0 = out, 1 = not out
13



Deriving the model likelihood

Assuming a functional form for H(x), conditional on some

parameters θ, the model likelihood is:

L(θ) = LOut(θ)× LNotOut(θ)

LOut(θ) =
I−N∏
i=1

(
H(xi)

xi−1∏
a=0

[1− H(a)]
)

LNotOut(θ) =
N∏
i=1

( yi−1∏
a=0

[1− H(a)]
)

{xi} = set of out scores

{yi} = set of not out scores

I = Total number of innings

N = Total number of not out

innings 14



Parameterising the hazard function

• To reflect our cricketing knowledge of the ‘getting your

eye in’ process, H(x) should be higher for low scores, and

lower for high scores

• From a cricketing perspective we often refer to a player’s

ability in terms of a batting average
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The effective average function, µ(x)

• Instead, we can model the hazard function in terms of an

‘effective batting average’ or ‘effective average function’,

µ(x).

µ(x) = batsman’s ability on score x, in terms of a

batting average

• Relationship between the hazard function and effective

average function:

H(x) =
1

µ(x) + 1

• This allows us to think in terms of batting averages,

rather than dismissal probabilities
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The effective average function, µ(x)

• Therefore, our model and the hazard function depend on

the parameterisation of the effective average function,

µ(x)

• Reasonable to believe that batsmen begin an innings

playing with some initial batting ability, µ1

• Batting ability increases with number of runs scored, until

some peak batting ability, µ2, is reached

• The speed of the transition between µ1 and µ2 can be

represented by a parameter, L

17



The effective average function, µ(x)

• Therefore, our model and the hazard function depend on

the parameterisation of the effective average function,

µ(x)

• Reasonable to believe that batsmen begin an innings

playing with some initial batting ability, µ1

• Batting ability increases with number of runs scored, until

some peak batting ability, µ2, is reached

• The speed of the transition between µ1 and µ2 can be

represented by a parameter, L

17



The effective average function, µ(x)

• Therefore, our model and the hazard function depend on

the parameterisation of the effective average function,

µ(x)

• Reasonable to believe that batsmen begin an innings

playing with some initial batting ability, µ1

• Batting ability increases with number of runs scored, until

some peak batting ability, µ2, is reached

• The speed of the transition between µ1 and µ2 can be

represented by a parameter, L

17



The effective average function, µ(x)

• Therefore, our model and the hazard function depend on

the parameterisation of the effective average function,

µ(x)

• Reasonable to believe that batsmen begin an innings

playing with some initial batting ability, µ1

• Batting ability increases with number of runs scored, until

some peak batting ability, µ2, is reached

• The speed of the transition between µ1 and µ2 can be

represented by a parameter, L

17



The effective average function, µ(x)

µ(x ;µ1, µ2, L) = µ2 + (µ1 − µ2) exp
(
− x

L

)

Figure 1: Examples of plausible effective average functions, µ(x).
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The effective average function, µ(x)
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(
− x

L

)

Figure 3: Examples of plausible effective average functions, µ(x). 20



The effective average function, µ(x)

µ(x ;µ1, µ2, L) = µ2 + (µ1 − µ2) exp
(
− x

L

)

Figure 4: Examples of plausible effective average functions, µ(x). 21



The effective average function, µ(x)

µ(x ;µ1, µ2, L) = µ2 + (µ1 − µ2) exp
(
− x

L

)

Figure 5: Examples of plausible effective average functions, µ(x). 22



Model specification

Set of parameters, θ = {µ1, µ2, L}

• Assign conservative, non-informative priors

• Model implemented in C++ using a nested sampling

algorithm that uses Metropolis-Hastings updates

23



Posterior summaries

Table 1: Posterior parameter estimates and uncertainties (68%
C.Is) for current top four Test batsmen (December 2018). Current
top Test all-rounder∗ included for comparison. ‘Prior’ indicates the
prior point estimates and uncertainties.

Player µ1 µ2 L Average

V. Kohli (IND) 22.7+9.7
−6.9 61.0+8.8

−6.4 6.5+10.0
−4.5 54.6

S. Smith (AUS) 33.2+10.6
−9.7 68.9+11.2

−8.2 11.6+13.2
−7.8 61.4

K. Williamson (NZL) 18.2+6.8
−5.1 58.3+7.7

−6.7 6.8+5.9
−3.5 50.4

J. Root (ENG) 24.4+7.9
−6.3 56.6+6.6

−5.7 7.7+5.9
−3.9 50.4

S. Al-Hasan∗ (BAN) 24.4+7.1
−6.8 43.4+6.2

−4.7 5.8+9.1
−4.2 39.7

Prior 6.6+12.8
−5.0 25.0+27.7

−13.1 3.0+6.7
−2.3 N/A
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Predictive effective average functions

Figure 6: Posterior predictive effective average functions, µ(x). 26



Predictive effective average functions

Predictive effective average functions allow for interesting

comparisons to be made.

E.g. between Kane Williamson and Joe Root, two top order

batsmen with similar career Test batting averages (50.42 vs.

50.44).

• Root appears to begin an innings batting with greater

ability

• µ1 = 18.2 vs. 24.4

• However, Williamson gets his ‘eye in’ quicker and appears

to be the superior player once familiar with match

conditions

• L = 6.8 vs. 7.7

• µ2 = 58.3 vs. 56.6

27
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Predictive effective average functions

Figure 7: Posterior predictive effective average functions, µ(x), for
Williamson and Root.

28



Looking at the bigger picture

So far the effective average allows us to quantify how the

batting abilities of players change within an innings, in terms

of a batting average.

What about how batting ability changes across a

player’s career?
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Modelling batting career trajectories

• Due to the nature of the sport, batsmen fail more than

they succeed

• Not uncommon to see players get stuck in a rut of poor

form over a long period of time

• Coaches more likely to tolerate numerous poor

performances in a row than in other sports

• Interestingly, players frequently string numerous strong

performances together

• Suggests external factors such as a player’s current form

is an important variable to consider
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Modelling batting career trajectories

Now, our aim is to derive a secondary model which can

measure and predict player batting ability at any given stage of

a career .

Needs to be able to handle random fluctuations in

performance due factors such as:

• Player form

• Player fitness (both mental and physical)

• Random chance!

36
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Gaussian processes

Gaussian processes are a class of schotastic process, made up

of a collection of random variables, such that every finite

collection of those random variables has a multivariate normal

distribution (Rasmussen & Williams, 2006).

A Gaussian process is completely specified by its:

• Mean value, m

• Covariance function, K (x , x)

37



Matérn 3
2

covariance function

The Matérn 3
2

covariance function:

K 3
2
(Xi ,Xj) = σ2

(
1 +

√
3 |Xi−Xj |

`

)
exp

(
−
√
3 |Xi−Xj |

`

)

σ = ‘signal variance’, determines how much a function value

can deviate from the mean

` = ‘length-scale’, roughly the distance required to move in the

input space before the function value can change significantly

38



Example: Gaussian processes

Figure 8: Some ‘noiseless’ observed data in the input/output
space.

39



Example: Gaussian processes

Figure 9: Example Gaussian processes fitted to some noiseless
data. Shaded area represents a 95% credible interval.

40



Example: Gaussian processes

Figure 10: Some ‘noisy’ observed data in the input/output space.
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Example: Gaussian processes

Figure 11: Example Gaussian processes fitted to some noisy data.
Shaded area represents a 95% credible interval.

42



Modelling batting career trajectories

Figure 12: Plot of Test career scores for Kane Williamson. 43



Modelling batting career trajectories

Recall the ‘within-innings’ effective average function, µ(x):

µ(x ;µ1, µ2, L) = player batting ability on score x

• µ2 = ‘peak’ batting ability within an innings

Define a ‘between-innings’ effective average function, ν(x , t):

ν(x , t) = player batting ability on score x, in tth

career innings, in terms of a batting average

• µ2t = ‘peak’ batting ability within batsman’s tth career

innings

ν(t) = expected number of runs scored in tth innings

= expected batting average in tth innings

44
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Model specification

Set of parameters, θ = {µ1, {µ2t}, L,m, σ, `}

• Assign conservative, non-informative priors to µ1, L, m, σ

and `

{µ2t} ∼ GP(m, K (Xi ,Xj ;σ, `))

• Model implemented in C++ using a nested sampling

algorithm that uses Metropolis-Hastings updates

45



Predictive effective average function

Figure 13: Test career batting data for Kane Williamson,
including career average (blue).
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Predictive effective average function

Figure 14: Posterior predictive effective average function, ν(t), for
Kane Williamson (red), with 68% credible intervals (dotted).
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Predictive effective average function

Figure 15: Posterior predictive effective average function, ν(t), for
Kane Williamson (red), including predictions for the next 20
innings (purple), with 68% credible intervals (dotted).
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Predictive effective average function

Figure 16: Posterior predictive effective average function, ν(t), for
Kane Williamson (red), including a subset of posterior samples
(green) and predictions for the next 20 innings (purple).
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Predictive effective average functions

Figure 17: Posterior predictive effective average functions, ν(t).
Dotted lines are predictions for the next 20 innings.
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Predicting future abilities

Table 3: Posterior predictive point estimates for the effective
average ν(t), for the next career innings. The official ICC Test
batting ratings (and rankings) are shown for comparison.

Player Career Average Predicted ν(next innings) ICC Rating (#)

V. Kohli (IND) 54.6 57.2 935 (1)

S. Smith (AUS) 61.4 62.6 910 (2)

K. Williamson (NZ) 50.4 51.3 847 (3)

J. Root (ENG) 50.5 49.7 808 (4)

S. Al-Hasan (BAN) 39.7 40.3 626 (20)

• Virat Kohli has a 18.3% chance of scoring 100 or more in

his next innings, while Steve Smith has a 20.6% chance

• There is a 32.2% chance that Virat Kohli outscores Steve

Smith in their next respective innings
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Concluding statements,

limitations and further work



Limitations and conclusions

• Models ignore variables such as balls faced and minutes

batted

• Historic data such as pitch and weather conditions

difficult to obtain

• Haven’t accounted for the likes of opposition bowler

ability

• Models assume player ability isn’t influenced by the match

scenario

– Limits usage to longer form Test/First Class matches
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Concluding statements

• There has been a recent boom in statistical analysis in

cricket, particularly around T20 cricket

• However, many analyses stray away from maintaining an

easy to understand, cricketing interpretation

• We have developed tools which allow us to quantify

player batting ability both within and between innings,

supporting several common cricketing beliefs

– ‘Getting your eye in’

– ‘Finding your feet’

53
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Effective average visualisations

Stevenson & Brewer (2017)

www.oliverstevenson.co.nz
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