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e Many previous statistical studies in cricket
— Optimising playing strategies (Swartz et al., 2006;
Norman & Clarke, 2010)
— Achieving a fair result in weather affected matches
(Duckworth & Lewis, 1998)
— Outcome prediction (Swartz et al., 2009)

...less attention on measuring and predicting player
performance
e Our focus is on measuring player batting ability

e Batting ability primarily recognised using a single number

Total # runs scored

e Batting average = o7 ot
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‘Getting your eye in’

Batting is initially difficult due to external factors such as:

e The local pitch and weather conditions

e The specific match scenario

The process of batsmen familiarising themselves with the
match conditions is nicknamed ‘getting your eye in’.
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Predicting the hazard

e Hazard = probability of a batsmen being dismissed on
their current score

e Due to the ‘eye in’ process, a constant hazard model is no
good for predicting when a batsman will get out

— Will under predict dismissal probability for low scores
— Will over predict dismissal probability for high scores (i.e.

when a player has their ‘eye in’)
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Predicting the hazard

Therefore it would be of practical use to develop models which
quantify:
1. How well a player bats when they first begin an innings

2. How much better a player bats when they have their ‘eye

in

3. How long it takes them to get their ‘eye in’



Kane Williamson’s career record

Kane Williamson £

Full name Kane Stuart Williamson
Born August 8, 1990, Tauranga
Current age 27 years 322 days

Major teams Mew Zealand, Barbados Tridents
Gloucestershire, Gloucestershire 2nd XI,

New Zealand Under-19s, Northern Districts,
Sunrisers Hyderabad, Yorkshire

Playing role Top-order batsman

Batting style Right-hand bat ‘Ew IEM_AW

Bowling style Right-arm offbreak

Relation Cousin - D Cleaver

ins «» ghls Explore Kane Wiliamson's performance
Batting and fielding averages

Mat Inns NO Runs SR 100 50 4s 6s Ct &
Tests 65 116 10 5338 5040 18 26 585 13 58
ODis «» 127 121 11 5156 145 4687 6195 8322 11 33 474 43 53
T20ls 4 51 49 7 1316 73" 31.33 1088 12095 0 B 142 21 24
First-class 128 220 17 9821 284" 48.37 19144 5130 28 49% 1149 30 119
List A 188 178 19 7277 145 4576 8838 8233 15 45 640 64 80
T20s «» 153 145 16 3808 101 2951 3120 122.05 125 365 85 64

oo o000

Credit: www.cricinfo.com 10
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Initial aim

1. Develop models which quantify a player’s batting ability
at any stage of an innings

e Models should provide a better measure of player ability
than the batting average
e Fitted within a Bayesian framework:

— Nested sampling (Skilling, 2006)
- C++, Julia & R

11



Deriving the model likelihood

If X € {0,1,2,3,...} is the number of runs scored by a
batsman:

Hazard function = H(x)
= P(X =x|X > x)

H(x) = The probability of getting out on score x, given you
made it to score x

12



Fit the model to player career data:

Runs Out/not out
13

42

53

104

130
2
1
176

N
O O O O O~ O o o

e 0 = out, 1 = not out
13



Deriving the model likelihood

Assuming a functional form for H(x), conditional on some
parameters ¢, the model likelihood is:

L(Q) = LOut(e) X LNotOut(e)

Lowe(6) = I__N (H(x,)xﬁl[l - H(a)]>

i=1 a=0
N y,-—l
Lnecoue(6) = IT (TL 11 - H(a)))
i=1 " a=0
{x;} = set of out scores | = Total number of innings
{yi} = set of not out scores N = Total number of not out

innings 14



Parameterising the hazard function

e To reflect our cricketing knowledge of the ‘getting your
eye in’ process, H(x) should be higher for low scores, and
lower for high scores
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Parameterising the hazard function

e To reflect our cricketing knowledge of the ‘getting your

eye in’ process, H(x) should be higher for low scores, and
lower for high scores

e From a cricketing perspective we often refer to a player's
ability in terms of a batting average

15



The effective average function, p(x)

e Instead, we can model the hazard function in terms of an
‘effective batting average’ or ‘effective average function’,

pu(x).
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The effective average function, p(x)

e Instead, we can model the hazard function in terms of an
‘effective batting average’ or ‘effective average function’,

pu(x).

1(x) = batsman'’s ability on score x, in terms of a
batting average

e Relationship between the hazard function and effective
average function:

1

HO) = oo+

e This allows us to think in terms of batting averages,

rather than dismissal probabilities
16



The effective average function, p(x)

e Therefore, our model and the hazard function depend on
the parameterisation of the effective average function,

11(x)
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The effective average function, p(x)

e Therefore, our model and the hazard function depend on
the parameterisation of the effective average function,
p(x)

e Reasonable to believe that batsmen begin an innings
playing with some initial batting ability, uq

e Batting ability increases with number of runs scored, until
some peak batting ability, p2, is reached

e The speed of the transition between 11 and p, can be
represented by a parameter, L

17



The effective average function, p(x)

1% g, 2, L) = pia + (1 = pi2) exp (=)
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1% g, 2, L) = pia + (1 = pi2) exp (=)
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Figure 3: Examples of plausible effective average functions, p(x). 20



The effective average function, p(x)

1% g, 2, L) = pia + (1 = pi2) exp (=)
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Figure 4: Examples of plausible effective average functions, p(x). 2t



The effective average function, p(x)

1% g, 2, L) = pia + (1 = pi2) exp (=)
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Figure 5: Examples of plausible effective average functions, p(x). 22



Model specification

Set of parameters, 0 = {1, o, L}

e Assign conservative, non-informative priors

e Model implemented in C4++ using a nested sampling
algorithm that uses Metropolis-Hastings updates

23



Posterior summaries

Table 1: Posterior parameter estimates and uncertainties (68%
C.ls) for current top four Test batsmen (December 2018). Current
top Test all-rounder® included for comparison. ‘Prior’ indicates the
prior point estimates and uncertainties.

Player 11 142 L Average
V. Kohli (IND) 227727 61.078% 6.573%° 54.6
S. Smith (AUS) 33.215%° 68.973%5% 11.617332 61.4
K. Williamson (NZL) 18.27¢% 58.3"77 6.8732 50.4
J. Root (ENG) 244719 56.678% 7.7739 50.4
S. Al-Hasan* (BAN) 24.4771 43.4%%2 5gt3} 39.7
Prior 6.671%% 25.072%7 3.0%51 N/A

24



Posterior summaries

Table 2: Posterior parameter estimates and uncertainties (68%
C.ls) for current top four Test batsmen (December 2018). Current
top Test all-rounder® included for comparison. ‘Prior’ indicates the
prior point estimates and uncertainties.

Player 11 142 L Average
V. Kohli (IND) 227727 61.078% 6.573%° 54.6
S. Smith (AUS) 33.215%° 68.973%5% 11.617332 61.4
K. Williamson (NZL) 18.272% 58.3%[7 6.8%32 50.4
J. Root (ENG) 244719 56.678% 7.7739 50.4
S. Al-Hasan* (BAN) 24.470% 434752 58%9] 39.7
Prior 6.671%% 25.072%7 3.0%51 N/A

25



Predictive effective average functions
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Figure 6: Posterior predictive effective average functions, p(x). 26



Predictive effective average functions

Predictive effective average functions allow for interesting
comparisons to be made.

E.g. between Kane Williamson and Joe Root, two top order
batsmen with similar career Test batting averages (50.42 vs.
50.44).
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Predictive effective average functions

Predictive effective average functions allow for interesting

comparisons to be made.

E.g. between Kane Williamson and Joe Root, two top order
batsmen with similar career Test batting averages (50.42 vs.
50.44).
e Root appears to begin an innings batting with greater
ability
e 1 = 18.2vs. 24.4
e However, Williamson gets his ‘eye in' quicker and appears
to be the superior player once familiar with match
conditions
e [ =68vs. 7.7

® |ip = 58.3 vs. 56.6
27



Predictive effective average functions
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Score (x)

Figure 7: Posterior predictive effective average functions, p(x), for

Williamson and Root. 28



Looking at the bigger picture

So far the effective average allows us to quantify how the
batting abilities of players change within an innings, in terms
of a batting average.
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Looking at the bigger picture

So far the effective average allows us to quantify how the
batting abilities of players change within an innings, in terms
of a batting average.

What about how batting ability changes across a
player’s career?

29
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Modelling batting career trajectories

e Due to the nature of the sport, batsmen fail more than
they succeed

e Not uncommon to see players get stuck in a rut of poor
form over a long period of time

e Coaches more likely to tolerate numerous poor
performances in a row than in other sports

e Interestingly, players frequently string numerous strong
performances together

e Suggests external factors such as a player’s current form
is an important variable to consider

85



Modelling batting career trajectories

Now, our aim is to derive a secondary model which can
measure and predict player batting ability at any given stage of
a career.

36



Modelling batting career trajectories

Now, our aim is to derive a secondary model which can
measure and predict player batting ability at any given stage of
a career.

Needs to be able to handle random fluctuations in
performance due factors such as:

e Player form
e Player fitness (both mental and physical)

e Random chance!

36



Gaussian processes

Gaussian processes are a class of schotastic process, made up
of a collection of random variables, such that every finite
collection of those random variables has a multivariate normal
distribution (Rasmussen & Williams, 2006).

A Gaussian process is completely specified by its:

e Mean value, m

e Covariance function, K(x, x)

37



Matérn% covariance function

The Matérng covariance function:
Ky(X,X) = o 1+ LEAL ) exp (20641 )

o = 'signal variance’, determines how much a function value
can deviate from the mean

¢ = 'length-scale’, roughly the distance required to move in the
input space before the function value can change significantly

38



Example: Gaussian processes

Input (x)

Figure 8: Some ‘noiseless’ observed data in the input/output

space.
P 39



Example: Gaussian processes

Input (x)

Figure 9: Example Gaussian processes fitted to some noiseless

data. Shaded area represents a 95% credible interval. 40



Example: Gaussian processes

Input (x)

Figure 10: Some ‘noisy’ observed data in the input/output space.

41



Example: Gaussian processes

Output (y)

Input (x)

Figure 11: Example Gaussian processes fitted to some noisy data.

Shaded area represents a 95% credible interval. "



Modelling batting career trajectories

Runs
50 100 150 200 250

Il [-Mw’|m“h.‘,‘u, WH]” HMH ”””””””””””

0 20 40 60 80 100 120 140
Innings #

0

Figure 12: Plot of Test career scores for Kane Williamson. 43



Modelling batting career trajectories

Recall the ‘within-innings’ effective average function, u(x):
p(x; g1, pa, L) = player batting ability on score x

e 1, = ‘peak’ batting ability within an innings
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Modelling batting career trajectories

Recall the ‘within-innings’ effective average function, u(x):
p(x; g1, pa, L) = player batting ability on score x
e /i, = ‘peak’ batting ability within an innings
Define a ‘between-innings’ effective average function, v(x, t):

v(x,t) = player batting ability on score x, in t*
career innings, in terms of a batting average

e Jip, = ‘peak’ batting ability within batsman’s tt career
innings

v(t) = expected number of runs scored in t™ innings

= expected batting average in t* innings

44



Model specification

Set of parameters, 0 = {u, {2, }, L, m, 0,0}

e Assign conservative, non-informative priors to 1, L, m, o
and /

{/L2t} ~ GP(ITI, K(Xi7XJ';O> 6))

e Model implemented in C4++ using a nested sampling
algorithm that uses Metropolis-Hastings updates

45



Predictive effective average function

o
& 1— Career average = 50.42
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Figure 13: Test career batting data for Kane Williamson,

including career average (blue). 46



Predictive effective average function

o
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Figure 14: Posterior predictive effective average function, v(t), for

Kane Williamson (red), with 68% credible intervals (dotted). i



Predictive effective average function

o
& 1— Career average = 50.42 —— Posterior predictive for v(t)
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Figure 15: Posterior predictive effective average function, v(t), for
Kane Williamson (red), including predictions for the next 20

innings (purple), with 68% credible intervals (dotted). 48



Predictive effective average function
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Figure 16: Posterior predictive effective average function, v(t), for
Kane Williamson (red), including a subset of posterior samples

(green) and predictions for the next 20 innings (purple). 0



Predictive effective average functions
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Figure 17: Posterior predictive effective average functions, v(t).

Dotted lines are predictions for the next 20 innings. 5



Predicting future abilities

Table 3: Posterior predictive point estimates for the effective
average v/(t), for the next career innings. The official ICC Test
batting ratings (and rankings) are shown for comparison.

Player Career Average Predicted v(next innings) ICC Rating (#)
V. Kohli (IND) 54.6 57.2 935 (1)
S. Smith (AUS) 61.4 62.6 910 (2)
K. Williamson (NZ) 50.4 51.3 847 (3)
J. Root (ENG) 50.5 49.7 808 (4)
S. Al-Hasan (BAN) 39.7 403 626 (20)
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Predicting future abilities

Table 3: Posterior predictive point estimates for the effective
average v/(t), for the next career innings. The official ICC Test
batting ratings (and rankings) are shown for comparison.

Player Career Average Predicted v(next innings) ICC Rating (#)
V. Kohli (IND) 54.6 57.2 935 (1)
S. Smith (AUS) 61.4 62.6 910 (2)
K. Williamson (NZ) 50.4 51.3 847 (3)
J. Root (ENG) 50.5 49.7 808 (4)
S. Al-Hasan (BAN) 39.7 403 626 (20)

e Virat Kohli has a 18.3% chance of scoring 100 or more in
his next innings, while Steve Smith has a 20.6% chance

e There is a 32.2% chance that Virat Kohli outscores Steve
Smith in their next respective innings 5
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Limitations and conclusions

e Models ignore variables such as balls faced and minutes
batted

e Historic data such as pitch and weather conditions
difficult to obtain

e Haven't accounted for the likes of opposition bowler
ability

e Models assume player ability isn't influenced by the match
scenario

— Limits usage to longer form Test/First Class matches
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Concluding statements

e There has been a recent boom in statistical analysis in
cricket, particularly around T20 cricket
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Concluding statements

e There has been a recent boom in statistical analysis in
cricket, particularly around T20 cricket

e However, many analyses stray away from maintaining an
easy to understand, cricketing interpretation

e We have developed tools which allow us to quantify
player batting ability both within and between innings,
supporting several common cricketing beliefs

— 'Getting your eye in’
— 'Finding your feet’

53



Effective average visualisations

Stevenson & Brewer (2017)

www.oliverstevenson.co.nz

Between innings batting abiites

Modelling between-innings batting abilities
This model ttempts o expiain how indivcual player batting abilty flctuates ovr the course o an entie laying areer. Player abity is describd i trrs of an ffecive average’, wich s how well the payer is batting at acertain poin o their

Gareer, interms of a balting average. The predicted average for the next innings is the number of uns we expect the player 10 score n their next Test inings.
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