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Integrative Analysis

Wikipedia. Data integration “involves combining data residing in dif-
ferent sources and providing users with a unified view of these data.
This process becomes significant in a variety of situations, which in-
clude both commercial and scientific domains”.

System Biology. Integrative Analysis: Analysis of heterogeneous
types of data from inter-platform technologies.

Goal. Combine multiple types of data:
» Contribute to a better understanding of biological mechanisms.

» Have the potential to improve the diagnosis and treatments of
complex diseases.
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Example: Data definition

p q

X Y

- n observations - n observations
- p variables - q variables
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Example: Data definition

p q

X Y

- n observations - n observations
- p variables - q variables

> “Omics.” 'Y matrix: gene expression, X matrix: SNP (single nu-
cleotide polymorphism). Many others such as proteomic, metabolomic
data.

> “Neuroimaging”. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

> “Neuroimaging Genetics.” Y matrix: DTI (Diffusion Tensor Imag-
ing), X matrix: SNP

» “Ecology/Environment.” Y matrix: Water quality variables , X ma-
trix: Landscape variables
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Data: Constraints and Aims

» Main constraint: colinearity among the variables, or situation with
p>norqg>n.
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Data: Constraints and Aims

» Main constraint: colinearity among the variables, or situation with
p>norq>n.
» Two Aims:
1. Symmetric situation. Analyze the association between two blocks
of information. Analysis focused on shared information.
2. Asymmetric situation. X matrix= predictors and Y matrix=
response variables. Analysis focused on prediction.

» Partial Least Square Family: dimension reduction approaches
> PLS finds pairs of latent vectors & = Xu, w = Yv with maximal
covariance.

e.g., &= u; XSNPy+ up x SNP, + -+ + up x SNP,
> Symmetric situation and Asymmetric situation.
» Matrix decomposition of X and Y into successive latent variables.

Latent variables: are not directly observed but are rather inferred
(through a mathematical model) from other variables that are observed
(directly measured). Capture an underlying phenomenon (e.g., health).
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PLS and sparse PLS

Classical PLS
» Output of PLS: H pairs of latent variables (&, wn), h=1,..., H.

» Reduction method (H << min(p, q)). But no variable selection for
extracting the most relevant (original) variables from each latent

variable.
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PLS and sparse PLS

Classical PLS
» Output of PLS: H pairs of latent variables (&, wn), h=1,..., H.
» Reduction method (H << min(p, q)). But no variable selection for
extracting the most relevant (original) variables from each latent
variable.
sparse PLS
> sparse PLS selects the relevant SNPs

» Some coefficients uy are equal to 0
Ep = U X SNP; + uo xXSNP>+ u3 XSNP3+---+ Up X SNPP
N—— ——
=0 =0
» The sPLS components are linear combinations of the selected
variables
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Group structures within the data

> Natural example: Categorical variables form a group of dummy variables
in a regression setting.
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» Genomics: genes within the same pathway have similar functions and
act together in regulating a biological system.
— These genes can add up to have a larger effect
< can be detected as a group (i.e., at a pathway or gene set/module
level).
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Group structures within the data
> Natural example: Categorical variables form a group of dummy variables
in a regression setting.

» Genomics: genes within the same pathway have similar functions and
act together in regulating a biological system.
— These genes can add up to have a larger effect
< can be detected as a group (i.e., at a pathway or gene set/module
level).

We consider that variables are divided into groups:

> Example: p SNPs grouped into K genes (X; = SNP))

X = [SNP1,...,SNPK|SNPk+1,SNPk+2,...,SNPh|...|SNP,+1,...,SNPP]

geney genez genex

> Example: p genes grouped into K pathways/modules (Xj = gene;))

X = | Xt Xy oo X Xicet Xerzo oo Xa oo 1 X1, Xz X |
[ ——
M1 Mz MK
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Group PLS

Aim: select groups of variables taking into account the data structure
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Group PLS

Aim: select groups of variables taking into account the data structure

» PLS components
§h2U1XX1+U2XX2+U3XX3+"'+UPXXP

» sparse PLS components (sPLS)
fh:U1XX1+ Us XX2+ Us XX3+"'+UPXXp
N—— ——

=0 )

Big Data PLS Methods December 2018, AASC Rotorua NZ 8/54



Group PLS

Aim: select groups of variables taking into account the data structure

» PLS components
En=U X Xi+UXxXo+ U3 X Xg+ -+ Up XX,
» sparse PLS components (sPLS)
En=urxXi+ U XXo+ Uz XXg+---+Up XX,
™ %
» group PLS components (gPLS)

moduleq modules modulek

fh = U X1 —+ U Xg + Us X3 + U X1 + Us X5 —+ - Up—1 Xp_1 + Up Xp
—— —— —— —— —— —— ——
=0 =0 #0 #0 #0 =0 =0

— select groups of variables; either all the variables within a group are selected
or none of them are selected
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Group PLS

Aim: select groups of variables taking into account the data structure

» PLS components
En=U X Xi+UXxXo+ U3 X Xg+ -+ Up XX,
» sparse PLS components (sPLS)
En=urxXi+ U XXo+ Uz XXg+---+Up XX,
™ %
» group PLS components (gPLS)

moduleq modules modulek

fh = U X1 —+ U Xg + Us X3 + U X1 + Us X5 —+ - Up—1 Xp_1 + Up Xp
S~—— S~—— S~—— S~ S~—— S—— ~——
=0 =0 +#0 #0 #0 =0 =0

— select groups of variables; either all the variables within a group are selected
or none of them are selected

.. does not achieve sparsity within each group ...
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Sparse Group PLS

Aim: combine both sparsity of groups and within each group.
Example: X matrix = genes. We might be interested in identifying particularly
important genes in pathways of interest.

» sparse PLS components (sPLS)
fh:U1XX1+ Uo XX2+ Us XX3+"'+UpXXp
S—— S~——
=0 =0

» group PLS components (gPLS)

module4 modules modulek

fh = W X1 + U Xz + U3 X3 + U X1 + Us X5 —+ -4 Up—1 Xp,1 + Up Xp
S~ S~ S~—— S~ S~—— —— ~——
=0 =0 #0 #0 #0 =0 =0
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Sparse Group PLS

Aim: combine both sparsity of groups and within each group.
Example: X matrix = genes. We might be interested in identifying particularly
important genes in pathways of interest.

» sparse PLS components (sPLS)
fh:U1XX1+ Uo XX2+ Us XX3+"'+UpXXp
SN——" N——
=0 =0
» group PLS components (gPLS)

module4 modules modulek

fh = W X1 + U Xz + U3 X3 + U X1 + Us X5 —+ -4 Up—1 Xp,1 + Up Xp
S~ S~ S~—— S~ S~—— —— ~——
=0 =0 #0 #0 #0 =0 =0

> sparse group PLS components (sgPLS)
moduleq moduley modulek
gh = U X1 —+ U X2 + U3 X3 + U X4 + Us X5 +-- 4 Up—1 Xp,1 + Up Xp
N—— N—— N—— N—— —— ——

—_——
=0 =0 #0 =0 =0 =0 =0
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Aims in a regression setting

< P > <« q >
.
G1 G2 GK
n Predictor matrix: Outcome matrix: | n

- n observations - n observations
- p variables - g variables
- K groups

i

> Select groups of variables taking into account the data structure;

all the variables within a group are selected otherwise none of
them are selected

» Combine both sparsity of groups and within each group; only rel-
evant variables within a group are selected
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[llustration: Dendritic Cells in Addition to Antiretroviral
Treatment (DALIA) trial

Primary endpoint
Safety

Secondary
endpoint
icity

Immune status
Viral status

Vaccinations
weeks¥ ¥ ¥ ¥
0 4 8 12 16 22 24

HAART plus
DC-HIV LIPO-5 vaccine Follow up
END OF STUDY

Interrupt HAART

» Evaluation of the safety and the immunogenicity of a vaccine on n = 19
HIV-1 infected patients.

» The vaccine was injected on weeks 0, 4, 8 and 12 while patients re-
ceived an antiretroviral therapy. An interruption of the antiretrovirals was
performed at week 24.

> After vaccination, a deep evaluation of the immune response was per-
formed at week 16.

> Repeated measurements of the main immune markers and gene ex-

pression were performed every 4 weeks until the end of the trials.
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DALIA trial: Question ?

First results obtained using group of genes

» Significant change of gene expression among 69 modules over
time before antiretroviral treatment interruption.
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DALIA trial: Question ?

First results obtained using group of genes

» Significant change of gene expression among 69 modules over
time before antiretroviral treatment interruption.

» How does the gene abundance of these 69 modules as measured

167

Primary endpoint

Safety
Secondary
endpoint
icity
Im@une status
W Viral status
weast ¥ ¥ ¥ I
0 4 8 12 16 22 24 48
HAART plus "
DC-HIV LIPO-5 vaccine Follow up
END OF STUDY
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Interrupt HAART
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sPLS, gPLS and sgPLS

> Response variables Y= immune markers composed of g = 7 cy-
tokines (IL21, IL2, IL13, IFNg, Luminex score, TH1 score, CD4).

> Predictor variables X= expression of p = 5399 genes extracted
from the 69 modules.

» Use the structure of the data (modules) for gPLS and sgPLS.
Each gene belongs to one of the 69 modules.

> Asymmetric situation.
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Results: Modules and number of genes selected
gPLS sgPLS SPLS

size compl comp2 comp3 compl comp2 comp3 compl comp2  comp3
MLl . 79 0 0 19 0 0 8 2 1
M3.2 126 126 0 0 41 0 0 22 0 0
M35 131 0 0 0 11 24 0 7 7 1
M3.6 42 42 0 0 15 0 0 6 0 0
M4.1 60 0 0 0 6 0 0 4 0 0
M4.13 2 72 0 0 26 0 0 11 0 0
M4.15 41 41 0 0 15 0 0 10 0 1
M4.2 43 43 0 0 14 0 0 7 1 1
M4.6 104 104 0 0 28 0 0 16 2 0
M51 214 0 0 0 46 0 0 21 2 4
M5.14 54 54 0 0 13 0 0 7 0 2
M5.15 24 24 24 0 20 0 0 18 0 0
Ms.7 119 0 0 0 18 0 40 8 0 2
M6.13 38 38 0 0 10 0 0 7 0 0
M6.6 40 40 0 0 19 0 0 11 0 0
M7.1 150 150 0 0 37 0 0 19 2 2
M7.27 29 29 0 0 8 0 0 3 0 1
M4.7 82 0 0 0 0 20 0 5 7 0
Me6.7 62 0 0 0 0 23 0 3 4 1
Mg.59 13 0 13 0 0 4 0 0 3 0
M52 65 0 0 0 0 0 32 0 1 0
M4.8 53 53 0 0 0 0 0 1 0 0
M7.35 19 19 0 0 0 0 0 1 1 0
M4.11 17 0 0 17 0 0 0 0 0 0

p = 5399 ; 24 modules selected by gPLS or sgPLS on 3 scores

December 2018, AASC Rotorua NZ
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Results: Modules and number of genes selected
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Results: Venn diagram

s
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Results: Venn diagram

a8 P PLS

120
157 658

193
sgPLS

SPLS

> sgPLS selects slightly more genes than sPLS (respectively 487 and 420 genes selected)

> But sgPLS selects fewer modules than sPLS (respectively 21 and 64 groups of genes
selected)

> Note: all the 21 groups of genes selected by sgPLS were included in those selected by
sPLS.

> sgPLS selects slightly more modules than gPLS (4 more, 14/21 in common).
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Results: Venn diagram

a8 P PLS

120
157 658

6l n
193
sgPLS

SPLS

> sgPLS selects slightly more genes than sPLS (respectively 487 and 420 genes selected)

> But sgPLS selects fewer modules than sPLS (respectively 21 and 64 groups of genes
selected)

> Note: all the 21 groups of genes selected by sgPLS were included in those selected by
sPLS.

> sgPLS selects slightly more modules than gPLS (4 more, 14/21 in common).
> However, gPLS leads to more genes selected than sgPLS (944)

> In this application, the sgPLS approach led to a parsimonious selection of modules and
genes that sound very relevant biologically
Chaussabel’s functional modules: http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules

Big Data PLS Methods December 2018, AASC Rotorua NZ 16/54


h

Stability of the variable selection (100 bootstrap samples)

ppppppppppppp S9PLS - companent 1

bk

sssssssssssss

“ N

Stability of the variable selection assessed on 100 bootstrap samples
on DALIA-1 trial data, for the gPLS, sgPLS and sPLS procedures re-
spectively. For each procedure, the modules selected on the original

Sample are SeparatedBfgngEQ%§l%dghat \Blecem eng , AASC Rotorua NZ 17/54




Now some mathematics ...
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PLS family

PLS = Partial Least Squares or Projection to Latent Structures

Four main methods coexist in the literature:
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
(i) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iiiy PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).
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PLS family

PLS = Partial Least Squares or Projection to Latent Structures

Four main methods coexist in the literature:
(i) Partial Least Squares Correlation (PLSC) also called PLS-SVD;
(i) PLS in mode A (PLS-W2A, for Wold’s Two-Block, Mode A PLS);

(iiiy PLS in mode B (PLS-W2B) also called Canonical Correlation
Analysis (CCA);

(iv) Partial Least Squares Regression (PLSR, or PLS2).

> (i),(i) and (iii) are symmetric while (iv) is asymmetric.
» Different objective functions to optimise.

» Good news: all use the singular value decomposition (SVD).
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Singular Value Decomposition (SVD)

Definition 1
Let a matrix M : p X q of rank r:

r
M= (LIA(VT = Z(S/UIV;F, (1

=1

~

> U = (u)) : pxpand V = (v)) : g X g are two orthogonal matrices
which contain the normalised left (resp. right) singular vectors

» A = diag(51,...,6r,0,...,0): the ordered singular values 61 > & >
-2 0,>0.

Note: fast and efficient algorithms exist to solve the SVD.

Big Data PLS Methods December 2018, AASC Rotorua NZ
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS
methods as:

(u',v*) = argmax Cov(Xp-1u,Yp-1V), h=1,...,H.
llull,=lIvil,=1

Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS
methods as:

(u',v*) = argmax Cov(Xp-1u,Yp-1V), h=1,...,H.

llull,=llvil,=1

Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(61, uy, vq) of singular elements of the SVD of Mj_y = XZ_1Yh_1:

(U™, v*) = (u, v1)
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Connexion between SVD and maximum covariance

We were able to describe the optimization problem of the four PLS
methods as:

(u',v*) = argmax Cov(Xp-1u,Yp-1V), h=1,...,H.
llull,=lIvil,=1

Matrices X and Y, are obtained recursively from Xp_1 and Yy_1.

The four methods differ by the deflation process, chosen so that the
above scores or weight vectors satisfy given constraints.

The solution at step h is obtained by computing only the first triplet
(61, uy, vq) of singular elements of the SVD of Mj_y = XZ_1Yh_1:
(u',v") = (u1,v1)

Why is this useful ?
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SVD properties

Theorem 2

Eckart-Young (1936) states that the (truncated) SVD of a given
matrix M (of rank r) provides the best reconstitution (in a least
squares sense) of M by a matrix with a lower rank K:

2 r

= > &

f
A of ran = Pl

k
min M~ Al = HM = > Seuev]
=1

If the minimum is searched for matrices ‘A of rank 1, which are under

~T — —~ .
the form uv' where u, v are non-zero vectors, we obtain

min
uyv

r
M- = 362 = M-
(=2
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SVD properties

Thus, solving )
ar%?in ”Mh_1 - WT“F 2)

and norming the resulting vectors gives us u; and v4. This is an-
other approach to solve the PLS optimization problem.
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Towards sparse PLS

» Shen and Huang (2008) connected (2) (in a PCA context) to least square
minimisation in regression:

2 2
—TII12 ] — |
Mot —T|| = |vee(Mi 1) - (Tp 0 W)|| = [vec(Mn1) - (Vo I)u
F N N———— e N————

y XB 5 y X8l

— Possible to use many existing variable selection techniques using
regularization penalties.
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Towards sparse PLS

» Shen and Huang (2008) connected (2) (in a PCA context) to least square
minimisation in regression:

2 2
—TII12 ] — |
Mot —T|| = |vee(Mi 1) - (Tp 0 W)|| = [vec(Mn1) - (Vo I)u
F N N———— e N————

y XB 5 y X8l

— Possible to use many existing variable selection techniques using
regularization penalties.

We propose iterative alternating algorithms to find normed vectors
u/|[ul] and v/|[v|| that minimise the following penalised sum-of-squares
criterion
—TI2 _
||Mh_1 -uv “F + Pa(u,v),

for various penalization terms P,(u, v).
— We obtain several sparse versions (in terms of the weights u and

v) of the four methods (i)—(iv).
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Sparse PLS models

For cases (i)—(iv),
» Aim: obtaining sparse weight vectors u, and v,.

> Associated component scores (i.e., latent variables) &, := X,_1uy and
wp = Yp1vy, h=1,... H, for a small number of components.

> Recursive procedure with objective function involving X_1 and Yx_4
— decomposition (approximation) of the original matrices X and Y:

X = EHCI’ + T:X,H’ Y= QHDL + TY,H’ (3)

where = = (£¢,,) and 2 = (wp).

> For the regression mode, we have the multivariate linear regression
model _
Y =XBps+ &,

with Bps = Un(CLUL) ' PyD], and & is a matrix of residuals.
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The algorithm

Main steps of the iterative algorithm

1.

2 e

XOZX, Y0:Y h:1
Mh_1 = XL1Yh_1.

SVD: extraction of the first pair of singular vectors uy and vy,.

Sparsity step. Produces sparse weights Usparse and Viparse.
Latent variables: &, = Xn_1Usparse aNd wp = Yp_1 Vparee
Slope coefficients:

> cn = XI_,&,/&L €, for both modes

> dy = Y] _,£,/€&, for “PLSR regression mode”
> e, =Y, ,wn/w]wp, for “PLS mode A”

Deflation:
> Xp = Xn_1 — &,c] for both modes

> Y, = Yy_1 — £,d] for “PLSR regression mode”
> Yo=Yy 1 — whe; for “PLS mode A”

If h = H stop, else h = h + 1 and goto step 2.
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sparse PLS (sPLS)

In sPLS, the optimisation problem to solve is

min [ My, ~ “hV;”i + Pa,, (Un) + Pay, (V).

up,vh
> My — upviIR = 3P 5T (my - unvin)?,
> M, = X]Y, for each iteration h.
> Py, (un) = X7, 247|uil and Py, (vi) = X1, 245|vil
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sparse PLS (sPLS)

In sPLS, the optimisation problem to solve is

min [ My, ~ “hV;”i + Pa,, (Un) + Pay, (V).

up,vh
> My — upviIR = 3P 5T (my - unvin)?,
> M, = X]Y, for each iteration h.
> Py, (un) = X7, 247|uil and Py, (vi) = X1, 245|vil

Ilterative solution. Applying the thresholding function g*°%(x, 1) = sign(x)(|x| — 1),
> to the vector Mv,; componentwise to get u.
> to the vector M uj, componentwise to get vj.
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group PLS (gPLS)

> X and Y can be divided respectively into K and L sub-matrices (groups) X*) :
nxpxand YO : nx g
> Same idea as Yuan and Lin (2006), we use group lasso penaltieS'

Py —MZ\@HU l, and  Py(v f/lzz Vailv?,

where u®) (resp. v() is the weight vector associated to the k-th (resp. I-th)
block.

In gPLS, the optimisation problem to solve is

i 3 M - w4 )+ Poo),

=1

» MKD = xyOT,

Remark if the k-th block is composed by only one variable then

Ul = J(uk))2 = |ut].
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group PLS (gPLS)

Theorem 3

Solution of the group PLS optimisation problem is given by:

uk) — (1 A VP

S L Y for fixed v
2 ||M(“~'>v||2)+ ( )

and
A v
V(I) — (1 _ 2 q

Z2 (N
2 AT )+ MY u (for fixed u).

Note: we will iterate until convergence of u(k) and v(), using alterna-
tively one of the above formulas.
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sparse group PLS: sparsity within groups

> Following Simon et al. (2013), we introduce sparse group lasso penalties:

K

Py(u) = (T=a)t ) Voellu®ll, + as il
k=1
L

Pu(v) = (1-a2)d ), Vallv@l, + asdalvil,.

I=1
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sparse group PLS (sgPLS)

Theorem 4
Solution of the sparse group PLS optimisation problem is given by:
u®) = 0if
g™ (M*Iv, 2101/2)|, < 411 = @1) VPr:
otherwise
gt MKy, 401 /2)
() = 1 gsoft (pq(k) (-
u' = gt (MY v, a1 /2) - A44(1 - aq) VK .
2|7 /)=l =) llgoft (M*v, 11 /2),
We have v(!) = 0 if .
geoft (M("') u, /12412/2)”2 <A2(1-a2) Vg
and
soft M(-J)Tu Aoaa/2
1 T g , A2a2
o= 2 gs"f‘(M(*’) U,A1a1/2)—12(1—ag)@¥
gt (MO w220z /2)1l,
otherwise.

Similar proof (see our paper in Bioinformatics, 2016).
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R package: sgPLS

» sgPLS package implements sPLS, gPLS and sgPLS methods:
http://cran.r-project.org/web/packages/sgPLS/index.html

» Includes some functions for choosing the tuning parameters related to
the predictor matrix for different sparse PLS model (regression mode).

» Some simple code to perform a sgPLS:

model.sgPLS <- sgPLS(X, Y, ncomp = 2, mode = "regression",
keepX = c(4, 4), keepY = c(4, 4),
ind.block.x = ind.block.x ,
ind.block.y = ind.block.y,
alpha.x = ¢(0.5, 0.5),
alpha.y = c¢(0.5, 0.5))

» Last version also includes sparse group Discriminant Analysis.
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Extension of sparse group PLS

Taking into account one more layer in the group structure:

» Example: SNP c Gene c Pathways
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Extension of sparse group PLS

Taking into account one more layer in the group structure:

» Example: SNP c Gene c Pathways
» Longitudinal study
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Group structures within the data}

» Gene Module: genes within the same pathway have similar func-
tions and act together to regulate the biological system.

H

X = [geney,...,geney | -~ | gene . q,. .., geney)
G1 G4
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Longitudinal group structures:

> Time index: genes within the same pathway at the same time
index have similar functions in regulating a biological system.2

G1

= T1

G1 = [gene,, ..., gene, | geney, ..., geney]
G1T1 G1T2
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Longitudinal group structures:

G1|Gi G2 | G2 [ G4 | G4
T | T2 T1| T2 T | T2

X =[G1T1,G1T2| G2T1,G2T2|---| G4T1, G4T2]
G1 G2 G4
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Aims:

G1|Gi G2 | G2 [ G4 | G4
T | T2 T1| T2 T | T2

» |dentify important modules at a group level, important times at a
subgroup level and single genes at an individual level.
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Sparse Models: sgsPLS

sparse group subgroup PLS

Time 1 Time 2
E=0XXi+0XXo+0X Xy +0XXo+---
Module 1

Time 1 Time 2

FUp g X Xp1 +0X Xy +0X Xp 1 +0Xx X,

Module k

Big Data PLS Methods December 2018, AASC Rotorua NZ

38/54



Sparse Models: sgsPLS

Optimisation of the weights
> X-score &, = Xp_1Up, Y-score wp = Yp_1Vp
K
max_ Cov(Xu.Yv) - &y Z Il — 2 Z Z |l - Ag]lull

, Up

such that v/ v, <1and u/up < 1.
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DALIA application

Primary endpoint
Safety

Secondary
endpoint
Immunogenicity

Immune status

\ Vaccinations | Viral status
weeks* * * * v ‘
0 4 8 12 16 22 24 48
HAART plus
DC-HIV LIPO-5 vaccine Follow up
END OF STUDY

v
Interrupt HAART
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Preliminary results — selected variables

> 19 modules, 784 genes total of 1452 selected variables.

M3.2
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M4.7
M5.1
M5.14
M5.15
M5.5
M5.7
M6.13
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M6.9
M7.1
M7.27
Ms.14
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R Package

sgsPLS Available now on GITHUB

library (devtools)
install_github("sgspls", "matt-sutton")
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Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?
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Regularized PLS scalable for BIG-DATA

What happens in a MASSIVE DATA SET context?

Massive datasets. The size of the data is large and analysing it takes
a significant amount of time and computer memory.

Emerson & Kane (2012). Dataset considered large if it exceeds 20% of

the RAM (Random Access Memory) on a given machine, and massive
if it exceeds 50%
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Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.
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Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.

PLS algorithm mainly based on the SVD of Mp_1 = X _,Ys_q:
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Case of a lot of observations: two massive data sets X: n x p matrix
and Y: n x g matrix due to a large number of observations.

We suppose here that n is very large, but not p nor q.

PLS algorithm mainly based on the SVD of Mp_1 = X _,Ys_q:

Dimension of Mp_1: p x g matrix !!

This matrix fits into memory.

But not X nor Y.
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Computation of M = XTY by chunks

G
_yTy _ T
M=XTY =" X[ Y
g=1
All terms fit (successively) into memory!
P 7
X1) Ya)
X M)
X= Y= " n
X@ Y@
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Computation of M = X"Y by chunks using R

> No need to load the big matrices X and Y

» Use memory-mapped files (called “filebacking”) through the big-
memory package to allow matrices to exceed the RAM size.

> A big.matrix is created which supports the use of shared memory
for efficiency in parallel computing.

» foreach: package for running in parallel the computation of M by
chunks
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Computation of M = X"Y by chunks using R

> No need to load the big matrices X and Y

» Use memory-mapped files (called “filebacking”) through the big-
memory package to allow matrices to exceed the RAM size.

> A big.matrix is created which supports the use of shared memory
for efficiency in parallel computing.

» foreach: package for running in parallel the computation of M by
chunks

Regularized PLS algorithm:
» Computation of the components (“Scores”):

Xu (nx1)and Yv (nx 1)

» Easy to compute by chunks and store in a big.matrix object.
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lllustration of group PLS with Big-Data

» Simulated: X (5GB) and Y (5GB);
» n = 560,000 observations, p = 400 and g = 500;

> Linked by two latent variables, made up of sparse linear combina-
tions of the original variables;

» Both X and Y have a group structure: 20 groups of 20 variables
for X and 25 groups of 20 variables for Y;

> Only 4 groups in each data set are relevant, 5 variables in each of
these groups are not relevant.
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X-variates Y-variates
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Figure 1: Comparison of gPLS and BIG-gPLS (for small n = 1,000)
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Figure 2: Use of BIG-gPLS. Left: small n. Right: Large n.
Blue: truth. Red: Recovered.
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Regularised PLS Discriminant Analysis

Categorical response variable becomes a dummy matrix in PLS algo-
rithms:

uuuuuuuuuuu

Xvaiale 2

] ]
Xvarae 1 Xevatate 1

Big Data PLS Methods December 2018, AASC Rotorua NZ 50/54



Concluding Remarks and Take Home Message

» We were able to derive a simple unified algorithm that perfoms
standard, sparse, group and sparse group versions of the four
classical PLS algorithms (i)—(iv). (And also PLSDA.)

> We used big memory objects, and a simple trick that makes our
procedure scalable to big data (large n).

» We also parallelized the code for faster computation.

> bigsgPLS Available now on GITHUB:

library (devtools)
install_github ("bigsgPLS", "matt-sutton")

» We have also offered a version of this algorithm for any combina-
tion of large values of n, p and q.

Big Data PLS Methods December 2018, AASC Rotorua NZ 51/54



References

> Yuan M. and Lin Y. (2006) Model Selection and Estimation in Re-
gression with Grouped Variables. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology), 68 (1), 49-67.

» Simon N., Friedman J., Hastie T. and Tibshirani R. (2013) A Sparse-
group Lasso. Journal of Computational and Graphical Statis-
tics, 22 (2), 231-245.

» Liquet B., Lafaye de Micheaux P., Hejblum B. and Thiebaut R.,
(2016) Group and Sparse Group Partial Least Square Approaches
Applied in Genomics Context. Bioinformatics, 32(1), 35-42.

> Lafaye de Micheaux P., Liquet B. and Sutton M., PLS for Big Data:
A Unified Parallel Algorithm for Regularized Group PLS. (Submit-
ted) https://arxiv.org/abs/1702.07066

» M. Sutton, R. Thiebaut, and B. Liquet. (2018) Sparse group sub-
group Partial Least Squares with application to genomics data.
Statistics in Medicine.

Big Data PLS Methods December 2018, AASC Rotorua NZ 52/54


https://arxiv.org/abs/1702.07066

