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Motivation
A personal history of ANOVA and REML/LMM

» A major focus over last 30 years: linear mixed models
(LMM) for data from plant improvement programmes

Comparative experiments: aim is to select “best” varieties

Developed LMM to maximise accuracy of selection
Often involve complex variance and correlation structures

e separable autoregressive processes for field trend
e factor analytic models for variety by environment interaction
e genetic relatedness using pedigree or marker information

* How did we get here?
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Motivation
A personal history of ANOVA and REML/LMM

» We trained and worked as young biometricians when
analysis of variance (ANOVA) was primary method for
comparative experiments

» GENSTAT was tool of trade so

» “Block” and “Treatment” structures
e Wilkinson and Rogers (1973) notation

ingrained in our statistical thinking

» Despite complexity of our LMM we (attempt to) maintain
these fundamental concepts, especially the link between
design and analysis

e Are we outliers?
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Motivation
Mis-use of LMM for comparative experiments

» With proliferation of LMM software (ASReml-R, SAS, Ime,
...), a move away from ANOVA techniques

* Literature full of examples of the mis-use of LMM for
comparative experiments. Some common flaws include

« failing to recognise pseudo (or false) replication

* testing/dropping model terms that define strata

* providing standard errors for means (not contrasts)

« failing to recognise the need for negative estimates of variance
components

« failing to provide sufficient detail for reader to uncover some of
these flaws!
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Motivation
Mis-use of LMM for comparative experiments

» Perhaps an unintentional lapse in transitioning from
ANOVA to LMM

e Perhaps a lack of exposure to traditional methods of
analysis for comparative experiments

* In recent years, we have made it a priority to fill in this gap
for young statistical colleagues in CBB at UOW

e Link between ANOVA and REML/LMM
* How to derive LMM that reflect experimental design, no matter
how complex

* Non-trivial mentoring exercise!! Tried various approaches
but no great success, until ...
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Motivation
Design Tableau

e Brian’s Honours course on Experimental Design at UOW
e Based on Bailey’s “Design of Comparative Experiments” (2008).
 Bailey (2008) contains words of wisdom that inspired us to
develop “Design Tableau”

* A simple but general series of steps for specifying the LMM for a
comparative experiment

e Founded on the seminal work of John Nelder, Robin Thompson
and Rosemary Bailey
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Motivation
Design Tableau

» Design Tableau can be used for classical analyses of
experiments with orthogonal designs
» But also (and more typically) for

e complex experiments with non-orthogonal designs (eg.
multi-environment trials, longitudinal data)
e complex variance modelling (model based analysis)

o Let’s start at the beginning ...
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Text-book example (Bailey, 2008)
Calf feeding experiment

» Four (¢t = 4) feed treatments (A,B,C,D) are to be compared
using n = 80 calves

e The calves are housed in m = 8 pens with k£ = 10 calves
per pen so that n = mk

» Each pen allocated one of the four feeds (all calves within
the pen consume the same feed)

» Calves are weighed individually at birth then at several
times thereafter

e For illustrative purposes we assume variable to be
analysed is average daily weight gain for each calf:

_ final calf weight — initial calf weight
£ number of days

Y
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Text-book example (Bailey, 2008)
Calf feeding experiment

Pen 1 Pen 2 Pen 3 Pen 4
Feed D Feed C Feed D Feed B
° ° 0 o .,
° ° L °
o o ° . . ° ..
oo ® o ¢ o
Pen 5 Pen 6 Pen 7 Pen 8
Feed B Feed A Feed A Feed C
s w o % .. e e ® b
‘e o
® o
° M ° e .O o.
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Classical analysis
Randomisation theory

 Classical analysis for comparative experiments is based on
randomisation theory (Nelder, 1954)

e Data are re-randomised to the observational units and
inferences are based on the observed outcome of the
resultant randomisation distribution

 This provides a platform for inference that is
distribution-free
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Calf feeding experiment
Randomisation distribution: the null experiment

Consider the null experiment:. all calves are assumed to
receive the same treatment (Nelder, 1954, 1965a)

To obtain the moments of the randomisation distribution
the observed data are considered as given or known

o Letz;j, i=1...m,j=1...kbe the observed datum from
the 5 calf in the i*" pen
* From these numbers form a set of random variables y;; by
e Choose a pen at random; re-order members at random to give

Yii, ..., Y1k
* Repeat procedure with another pen to give yo1, .. ., Y2k
* Repeat for all other pens
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Calf feeding experiment
Randomisation distribution: the null experiment

 The (null) distribution of the y;; is such that

E(yi;) = po
var (yij) = ‘7?3
cov (yij, yin) = p1o, (j # b,s0 2 calves in same pen)
cov (Yij, yab) = p20o, (i # a,s0 2 calves in different pens)

* In vector notation, and assuming that the data are ordered
as calves within pens

E(y) = NO]-n
var(y) = 02[(1—p1)I;m @ I+ p2dm @ Ji + (p1 — p2) I ® T4

where J,, is an m x m matrix with all elements equal to 1
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Calf feeding experiment
Randomisation distribution and ANOVA

* Null Analysis of Variance (ANOVA) is built up by forming
strata which are defined as the eigenspaces of var (y)

 For calf experiment there are 3 eigenspaces, with
dimensions 1, (m — 1) and m(k — 1) and eigenvalues

© &0 =0,(1—p1) +oyk(pr — p2) + oymkp:
© & =o0y(1—p1) +oyk(p1 — p2)
c L =0,(1—p)

e These will be called the “mean”, “pens” and “calves” strata
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Calf feeding experiment
Randomisation distribution and ANOVA

e We can then re-express var (y) as
var (y) = §oPo + §1.P1 + §2Po

e The P,, s =0, 1,2 are orthogonal projection matrices that
can be written as K K

Stratum P, K

mean Im @ Jy/(mk) 1,,/vm® 1 /Vk
pens I,@Jy/k—Jpn@Jr/(mk) (Ip—Jm/m)@1x/VE
calves I,I,—1I,&J;/k I, ® (Iy—Ji/k)

e The strata define 3 independent linear models that are
obtained by applying a one-to-one transformation of the
data from y to K"y where K = [Ky K; K]
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Calf feeding experiment
Randomisation distribution plus treatments

e We now consider the imposition of the treatments so that
E(yzj) =y, Mg, He OF pp

e Thus the first and second moments of the distribution are
given by

E(y) = pol
var(y) = &Po+ &P+ &Po

where M= (MpaMc?MDaMBaMBaMA7MA7MC)T
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Calf feeding experiment
Linear models for strata

* The 3 linear models associated with the strata are defined
for K,y, s=0,1,2with

Stratum E (KTy) var (Ky)
mean avmk o

pens (u— i) VE §1d(m-1)
calves 0 S Limk—1)

where fi = 3, E (yi5) /n
o &, called stratum variances

 Typically the 3 models are represented using an ANOVA
table ...
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Calf feeding experiment: ANOVA table

Stratum Source df ms E(ms) VR

mean 1
Mean 1 msy  foli) + &
residual 0

“pens 7
Feed 3 msp fi(p—pgly,)+& msp/msp
residual 4 msp &

“calves 72
residual 72 msg &
Total 80

e Using Nelder (1965b) can show that information on
e Mean entirely in mean stratum. Obtain best linear unbiased
estimate (BLUE) of mean within this stratum.
e Feed treatment contrasts entirely in pens stratum. Obtain BLUEs
of contrasts within this stratum.
» Residual mean squares provide unbiased estimates of

stratum variances; cannot estimate £, so arbitrarily set
§o=¢&1



Calf feeding experiment: ANOVA table

Stratum Source df ms E(ms) VR

mean 1
Mean 1 msy  foli) + &
residual 0

‘pens 7
Feed 3 msp fi(p—pgly,)+& msp/msp
residual 4 msp &

“calves 72
residual 72 msg &
Total 80

* In order to test hypothesis Hy : p1, = p1, = p, = p,, Mmust
assume multivariate Normal distribution, so

Yy~ N(p®1ly, &EPo+ &P+ &P))

e Then test Hy by comparing the VR with an F-distribution
n(3,4) df
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Calf feeding experiment
ANOVA and Linear Mixed Model

* ANOVA model assuming multivariate Normal distribution:
Yy~ N(p®lg, §Po+ &P+ 6Po)
» Except that must set £, = &; so

y ~N (p®1y, & (Po+ Pp)+&Ps)
~N (@1, &1nQJk/k+bly ® (I, — Ji/k))

* We can fit this as a linear mixed model
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Linear Mixed Model

e The linear mixed model (LMM) for the data vector y is
y=X7+Zu+te

e 7 is the vector of fixed effects with associated design matrix X
(assumed full column rank)

* wu is the vector of random effects with associated design matrix Z

e e is the vector of residuals

» Variance models given by:

var (u) =G & var(e)=R
var (y) = ZGZ' + R

e Fitting the LMM =
¢ Residual Maximum Likelihood (REML) estimates of variance

parameters

e Empirical Best Linear Unbiased Estimates (EBLUES) of fixed
effects

e Empirical Best Linear Unbiased Predictions (EBLUPS) of random
effects
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Calf feeding experiment
Equivalence of ANOVA and Linear Mixed Model

e T is the t— vector of fixed effects (overall mean and feed
treatment effects) with associated design matrix X so that

E(y) = X7
= p®l

* u is the m— vector of random pen effects with associated
design matrix Z = I, ® 1

» Variance models given by:

var (u) = O'zIm & var(e) = 0% I
var (y) = O'%Im(X)Jk—FO'zIm@Ik
=T ® Ji/k+ &In @ (I, — Ji/k)

where &) = ko2 + 0% and & = o
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Calf feeding experiment
Equivalence of ANOVA and Linear Mixed Model

» Variance parameter estimates:

ANOVA | LMM note/proviso
517 52 q-?)a 6-2
& = ko2 + 62 | allow 62 < 0
& = 62

* Treatment effect estimates and inference:

ANOVA LMM note/proviso

fi, i=A,B,c,D | fi, i=A,B,C,D

se(fi; — fi;) se(f; — fi;) se(/i;) not valid (£, not estimable)

F test, df Wald test, df | allow 63, < 0; use Kenward &
Roger (1997) for Wald df
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Comparative experiments
Linear Mixed Model

* How can we derive an appropriate LMM for a comparative
experiment?
» We use an approach that we have called “Design Tableau”

e |t can be used for quite complex non-orthogonal
experiments, with the aim that it reproduces an ANOVA in
orthogonal cases

e Design Tableau requires some definitions . ..
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Comparative experiments
Some key definitions (Bailey, 2008)

* An experimental unitis the smallest unit to which a
treatment can be applied

e A treatment is the entire description of what can be applied
to an experimental unit

» An observational unitis the smallest unit on which a
response will be measured. It is often called a plot.
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Comparative experiments
Some key definitions (Bailey, 2008)

« All designs have three components:
A plot structure: meaningful ways of dividing up the set of all plots
A treatment structure: meaningful ways of dividing up the set of all
treatments
A design function: manner in which treatments are allocated to
plots

* Plot and treatment structures described using factors

» Universal factor (a single level): must be both a treatment (“1”)
and plot factor (“U”)

« Aliasing of factors: “F” and “G” aliased if the same apart from
names of their levels

e A factor may occur in either the plot or treatment structure, but not
both (Welham, pers comm)
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Design Tableau
Essential steps

Step 0 Talk to researcher and draw a picture of the
experimental layout!

Step 1 Define treatments; list treatment factors
Step 2 Define plots (observational units); list plot factors

Step 3 Describe design function (how treatments are
allocated to plots); thence define experimental unit
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Calf feeding example

Step 0

Step1 ¢ treatments = feeds (4 treatments)
 treatment factors = { 1, Feed (4 levels) }

Step2 ¢ plots (observational units) = calves (80 units)
e plot factors = { U, Pen (8 levels), Calf (10
levels) }

Step 3  « design function: feeds allocated to calves
such that all 10 calves within a pen receive
same feed. Experimental units = pens
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Design Tableau
Essential steps

Step 6 Use treatment factors to construct model formula
for treatment structure (Wilkinson and Rogers,
1973, notation)
 Universal factor “1” included by default
e Terms in formula will be included in LMM as
fixed effects

Step 7 Use plot factors to construct model formula for plot
structure

e Combinations of levels of factors must
completely index observational units

 Universal factor “U” included by default

e Terms in formula will be included in LMM as
random effects, each set with |ID variance
structure
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Design Tableau
Essential steps

Step 8 Identify obvious aliasing of factors in treatment
structure with factors in plot structure eg. “1” and
“U” (re-write as “1[U]” or “U[1])

Step 9 Construct a table (Design Tableau) listing all terms
in the treatment model formula followed by terms
in plot model formula

Step 11 Fit LMM commensurate with Design Tableau
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Calf feeding example
Design Tableau

Step 6 treatment structure model formula:
1/Feed = 1 + Feed

Step 7 plot structure model formula:
U/Pen/Calf = U + Pen + Pen:Calf

Step 8 Aliasing: “1” and “U”. Write “1[U]” where fitted as
fixed and “U[1]” where fitted as random

Step 9 Design Tableau

Term in Fixed or Variance
Source  model Random model
1[U] 1 F
Feed Feed F

v - R

Pen Pen R o1,
Pen:Calf Pen:Calf R o’I,.1

(= residual)
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Calf feeding example
Step 11 using ASReml-R (Butler et al, 2009)

e Fit linear mixed model:
calf.asr <- asreml(y ~ 1 + Feed, random = ~ Pen,
residual = ~ units, data=...)
* 1 + Feed: fixed model formula, includes overall mean 1 by default
¢ random = ~ Pen: random model formula, default 11D variance
model, default constrained positive
e residual = ~ units: residual model formula, default IID variance
model for units (factor with n levels)

 Estimates, /i, and sed for feed means:
predict(calf.asr, classify="Feed”)

* Test hypothesis Hy : i, = p1, = pi, = i,
Wald(calf.asr, denDF="algebraic™)
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Design Tableau for comparative experiments
Summary: orthogonal designs

e Have demonstrated how Design Tableau can be used to
derive a LMM that is a surrogate for randomisation-based
ANOVA for experiments with orthogonal designs.

e Some provisos . ..

 Allow negative estimates of variance components so can
reproduce strata for valid inference

e Use Kenward & Roger (1997) df adjustments so can use correct
reference distribution for F-tests

* Note that we do not attempt to structure Design Tableau
table like an ANOVA (strata, sources within strata) since in
non-orthogonal cases this is not possible
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Design Tableau for comparative experiments
Summary: non-orthogonal designs

 Very few of the experiments we analyse use orthogonal
designs!

 Also typically complex (unbalanced multi-environment
trials; longitudinal data; multi-phase experiments with
composite sampling .. .)

» But we always start with Design Tableau to obtain the
terms that reflect the randomisation used in the
experiment. This provides safe-guard against false
replication, omission of strata, . . .

e For most experiments, Design Tableau provides base-line
“working model” which we may extend in various ways eg.
incorporate spatial correlation models for field trials, factor
analytic models for variety by environment effects, ...
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Design Tableau
All steps (so far!)

Step 0 Picture of the experimental layout

Step 1 Define treatments; list treatment factors

Step 2 Define plots (observational units); list plot factors
Step 3 Describe design function; define experimental unit
Step 4 List anatomical variables, if any

Step 5 List extraneous variables, if any

Step 6 Use treatment factors and anatomical variables to
construct model formula for treatment structure
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Design Tableau
All steps (so far!)

Step 7 Use plot factors to construct model formula for plot
structure
Step 8 Identify obvious aliasing between factors in
treatment and plot structures
Step 9 Construct a table (Design Tableau) listing all terms
in the treatment model formula followed by terms
in plot model formula
Step 10 Possibly modify “working” table from Step 9 eg.
* Incorporate more complex variance structures
for random effects
e Selection experiments: move treatment
effects from fixed to random

Step 11 Fit LMM commensurate with final Design Tableau
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Example: non-orthogonal design
Frost expression experiments

e Frost damage a key issue for Australian wheat growers

» Frost expression experiments (FEEs) conducted at sites
across Australia to provide information for growers on
tolerance of commercial and near release varieties

e FEEs are field trials in which varieties exposed to natural
frost events

 Variable of interest, frost induced sterility (FIS), obtained
after frost events: ratio of number of sterile grains to total
grains for individual tillers

Alison Smith & Brian Cullis



Frost expression experiments
Protocol for single FEE
» Each variety grown at several times of sowing (TOS) to
ensure some tillers at correct stage of development (SOD)
when frost event occurs
 All plots for a TOS grouped together in a block
» Within each TOS block a randomised complete block
design for varieties
e An illustrative example: 3 TOS blocks; 48 varieties; 2
replicates of varieties within each TOS block

Block 1 Block 2 Block 3
(ros 1) (08 2) (ros3)

SBlockl  SBlock2 SBlock1  SBlock2 SBlock1  SBlock2
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Frost expression experiments
Protocol for single FEE

 After a frost event, researchers walk through the trial

* Visually assses if any tillers in a plot are at an SOD of interest
(flowering and ear peep)

* If so, tag these tillers (up to a maximum of 30 per stage per plot),
but leave the plant to continue growing

e About 2 weeks after frost event, tagged tillers are cut and
individually bagged; grains counted to provide FIS

e Highly unbalanced: only a subset of plots measured for a single
frost event (and number varies between TOS blocks); number of
tillers measured in a plot varies between plots

Block 1 Block 2 Block 3
(Tos 1) (TOs 2) (Tos 3)

SBlockl  SBlock2 SBlack1  SBlock2 SBlock1  SBlock2
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Frost expression experiments
Some key issues

e Data for single frost event highly unbalanced

« Typically multiple frost events so potential for repeated
measurements on a plot. Even more imbalance (number of
repeated measurements per plot varies and may be 0)

e Aim is to assess variety tolerance but expect variety by
TOS (careful!), variety by SOD and possibly variety by TOS
by SOD interactions

 Finally there are 11 FEEs so a multi-environment trial
analysis required to examine interactions with environment

e Where to begin?
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Frost expression experiments
Design Tableau

Where to begin?
Start with Design Tableau for a single trial and frost event

lllustrate some key points using simple example and
assuming complete balance: 33 tillers measured in every
plot (total of 9504 observational units)

e We can use ANOVA for this ...
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Frost expression experiments
Single FEE and single frost event (balanced): ANOVA table

Stratum Source df
mean 1
Mean 1
residual 0
“Block 2
TOS 2
residual 0
" Block:SBlock Block:SBlock ~ 3
" Block:SBiock:Plot 282
Variety 47
TOS:Variety 94
residual 141
" Block:SBlock:Plot:Tiller residual 9216
Total 9504
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Frost expression experiments
Single FEE and single frost event: ANOVA to Design Tableau

» TOS information is in Block stratum and no residual df (so
no inference for testing)

* Variety information is in Block:SBlock:Plot stratum (not
Block:SBlock:Plot:Tiller)

» How to capture all of this when we move into unbalanced
scenario?

* How to add SOD?

Block 1 Block 2 Block 3
(Tos 1) (Tos 2) (Tos 3)

SBlock1  SBlock2 SBlock1  SBlock2 SBlock1  SBlock2
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Frost expression experiments
Design Tableau for single FEE and single frost event

* Now allow for unequal number of tillers measured per plot
(assume max of 50); unequal number of plots measured
(max of 48 per sub-block); introduce SOD

Step1 ¢ treatments = TOS x Variety combinations
(144 treatments)
* treatment factors = { 1, TOS (3), Variety (48) }
Step 2 ¢ plots (observational units) = tillers (n units)

« plot factors = { U, Block (3), SBlock (2), Plot
(48), Tiller (50) }
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Frost expression experiments
Design Tableau for single FEE and single frost event

Step 3 < design function: treatments allocated to plots
so that

« all tillers in same plot relate to same variety and
TOS

 each plot within sub-block allocated a different
variety but same TOS

 each sub-block within a block contains a single
replicate of each variety and a single TOS

 each block receives a different TOS

Step4 « Anatomical variables: SOD (factor with 2
levels)
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Frost expression experiments
Design Tableau for single FEE and single frost event

Step 6 treatment structure model formula:
1/(TOS*Variety*SOD)
Step 7 plot structure model formula:
U/Block/SBlock/Plot/Tiller
Step 8 Aliasing
e “1”and “U”
e TOS and Block (write TOS[Block] where fitted

as fixed and Block[TOS] where fitted as
random)
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Frost expression experiments
Design Tableau for single FEE and single frost event

Step 9 Design Tableau (working table)

Source Term in model Fix/Ran
1[U] 1 F
TOS[Block] TOS F
Variety Variety F
TOS[Block]:Variety TOS:Variety F
SOD SOD F
TOS[Block]:SOD TOS:SOD F
Variety:SOD Variety:SOD F
TOS[Block]:Variety:SOD TOS:Variety:SOD F
oy - T R
Block[TOS] - R
Block[TOS]:SBlock Block:SBlock R oiI
Block[TOS]:SBlock:Plot Block:SBlock:Plot R ogI
Block[TOS]:SBlock:Plot:Tiller Block:SBlock:PLot:Tiller R o2I
(=residual)
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Frost expression experiments
Design Tableau

» Have shown Design Tableau for single trial and frost event
» Extend to DT for single trial and multiple frost events
e Extend to DT for multiple trials and multiple frost events

* Finally modify LMM with complex variance models to
accommodate multi-environment and longitudinal aspects

» See Cocks, March, Biddulph, Smith & Cullis (under
revision) for full discussion, but here is final DT ...
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Frost expression experiments
Final Design Tableau

Source Term in model Fix/Ran
1[U] 1 F
Env[Expt] Env [
Variety - R
Env[Expt]:Variety Env:Variety R (AA +9)® 1T
SOD SOD F
Env[Expt]:TOS[Block] at(Env,...):TOS F
Env[Expt]:SOD at(Env,...):SOD [
Env[Expt]:TagEvent[Time] at(Env,...):Time R &Gq;
Env[Expt]: TOS[Block]:Variety at(Env,...):TOS:Variety R ©Gs;
Env[Expt]: TOS[Block]:SOD at(Env,...):TOS:SOD [=
Env[Expt]: TOS[Block]:TagEvent[Time] at(Env,...):TOS:Time R &G3;
Env[Expt]:Variety:SOD at(Env,...):Variety:SOD R ©Gy4;
Env[Expt]:Variety:TagEvent[Time] at(Env,...):Variety:Time R &Gs5;
Env[Expt]: TOS[Block]:Variety:SOD at(Env,...):TOS:Variety:SOD R &Gg;
Env[Expt]: TOS[Block]:Variety: TagEvent[Time] at(Env,...):TOS:Variety:Time R &Gz,

" Env[ExptlTagger — ~ ~ ~ ~ ~ ~ — — — T T 7 at(Env,...)Tagger =~~~ F R ®Gs;
Env[Expt]:Counter at(Env,...):Counter R ©Gy;

togy - T T T T T T T T T - T T T T T T T T T [ S
Expt[Env] = R
Expt[Env]:Block[TOS] = R
Expt[Env]:Block[TOS]:SBlock at(Env,...):Block:SBlock R ®Gio;
Expt[Env]:Block[TOS]:SBlock:Plot at(Env,...):Block:SBlock:Plot R &Gi1;
Expt[Env]:Block[TOS]:SBlock: Time[TagEvent] at(Env,...):Block:SBlock:Time R &Gi2;
Expt[Env]:Block[TOS]:SBlock:Plot:Time[TagEvent] at(Env,...):Block:SBlock:Plot:Time R &Gi3;
Expt[Env]:Block[TOS]:SBlock:Plot:Time[TagEvent]:Tiller residual R &R;




Frost expression experiments
Impact of Design Tableau

* Previous analyses of these data did not use our approach
and failed to identify key issues; a loss of faith in results by
industry

» With use of Design Tableau and close association with
researchers we have regained industry and grower
confidence in the results. Complete acceptance.
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Design Tableau for comparative experiments
Summary

* We and our colleagues in CBB at UOW have been using
Design Tableau for 12 months

» General consensus is that it is intuitive, straight-forward
and helpful!

 Also useful for writing up statistical methods: reports for
clients and journal papers

e We have used it for a wide range of (weird and wonderful)
problems, including METs (with and without pedigree), GS,
QTL detection, multi-phase
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Design Tableau for comparative experiments
Summary

» Design Tableau can also be used for designs generated
using model-based techniques (our typical paradigm)

» Even the most experienced biometricians can miss key
features when using LMM to analyse comparative
experimets

* We believe Design Tableau provides a framework to
safeguard against this
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Design Tableau for comparative experiments
Key references

 Bailey, R.A. 2008. The design of comparative experiments.
Cambridge University Press.
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experiments with orthogonal block structure. Il. Treatment
structure and the general analysis of variance.
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