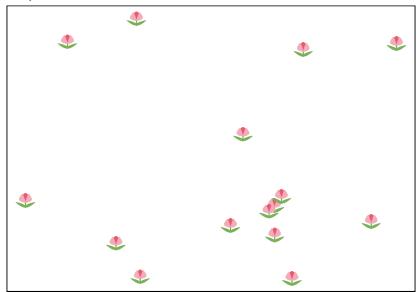
Shared latent fields for mark-location dependence in a log-Gaussian Cox process

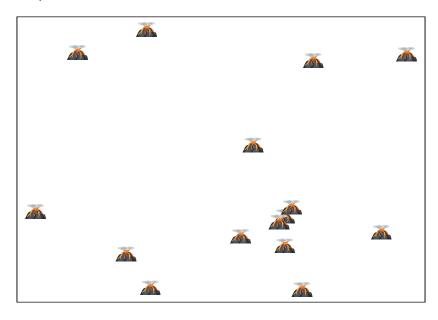
Charlotte M. Jones-Todd @cmjonestodd

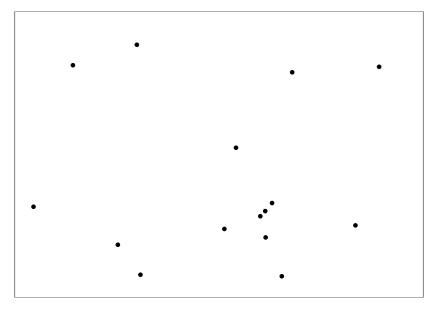
Point patterns

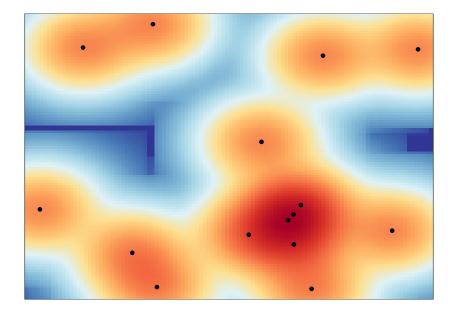


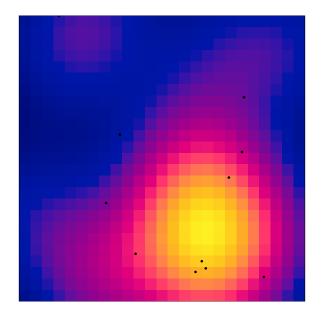
 $\textbf{emoGG}: \ \mathsf{https://github.com/dill/emoGG}$

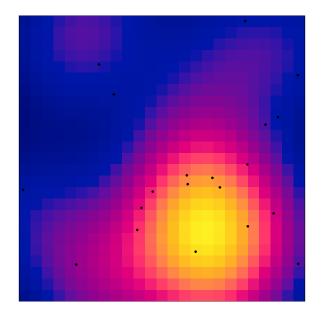
Point patterns

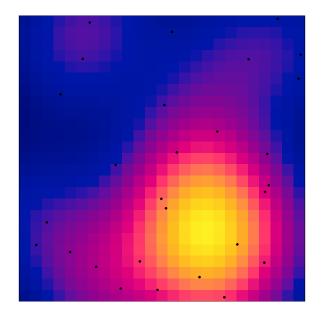












The log-Gaussian Cox process

A log-Gaussian Cox process (LGCP) considers the number of points within some region Ω , $N(\Omega)$, to be given by,

$$\mathsf{N}(\Omega) \sim \mathsf{Poisson}\left(\int_{\Omega} \lambda(\mathbf{s}) ds\right).$$

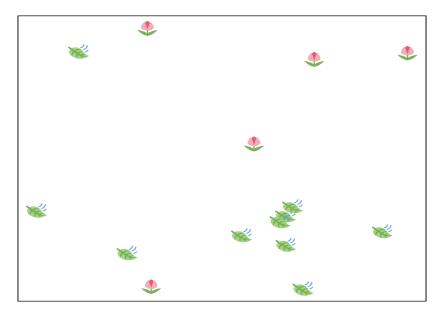
Here

$$\int_{\Omega} \lambda(\mathbf{s}) d\mathbf{s} = \Lambda(\mathbf{s}) = \exp(z(\mathbf{s}))$$

with z(s) being a realisation of a Gaussian process.

Consider a LGCP where each point in the pattern has some characteristic: either a quantitative or qualitative mark.

A marked point pattern



A marked point pattern

These marks are themselves a realisation of some stochastic process $M(\mathbf{s})$ that may be dependent on the intensity of the LGCP.

Here, the point process

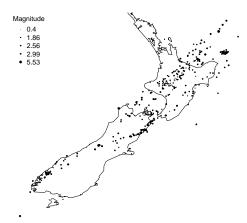
$$\Lambda(\mathbf{s}) = \int_{\Omega} \lambda(\mathbf{s}) ds = \exp(z(\mathbf{s}))$$

and the mark

$$\nu(M(\mathbf{s})) = \beta_0 + \beta z(\mathbf{s}) + z_m(\mathbf{s})$$

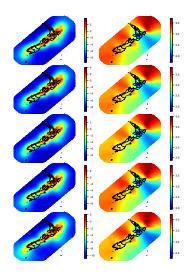
are linked through the Gaussian random field z(s).

NZ earthquakes



Epicentre locations of earthquakes in and around New Zealand (March–April, 2018)

NZ earthquakes

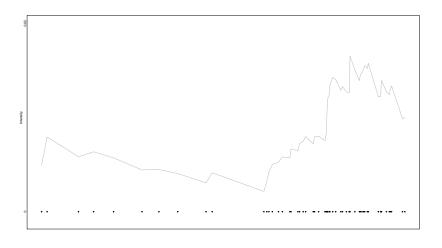


Posterior random fields for both the LGCP and the mark (magnitude)

In summary

- use shared stochastic structures to infer the dependency inherent in marked point pattern data,
- incorporate both the dependencies between the marks and point locations, and the relationship between marks conditional on their locations,
- dependencies are represented by shared latent spatial random effects.

Other point processes



Hawkes process intensity